Skip to main content

Advertisement

Log in

Hypothalamo-pituitary-adrenal axis dysfunction as a contributory factor to chronic pain and depression

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Chronic pain and depressive illness are variably resistant to treatment with current pharmacologic therapies. Pain as a reflex sensory response is accompanied by a fast autonomic and delayed neuroendocrine response mediated by the sympathoadrenal and hypothalamo-pituitary-adrenal (HPA) axis, respectively. The emotional aspect of the pain response is encoded by corticolimbic systems (including the HPA axis) to encapsulate the relationship between pain, memory, and mood. These same systems contribute to the symptomatology of depression, a common symptom of which is pain. Conversely, many chronic pain patients may suffer from depressive illness, which appears to develop as a consequence of chronic pain. A comparison of key changes in HPA function after chronic stress in animals with clinical depression in humans, reveals some striking similarities. In this article, the role of the HPA axis in the etiology of chronic pain and depression is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ruoff GE: Depression in the patient with chronic pain. J Fam Pract 1996, 43(suppl):S25-S34.

    PubMed  CAS  Google Scholar 

  2. Merskey H: Pain and psychological medicine. In Textbook of Pain, edn 4. Edited by Wall PD, Melzack R. Churchill-Livingstone: Edinburgh; 1994:929–950.

    Google Scholar 

  3. Morley S, Williams AC, Black S: A confirmatory factor analysis of the Beck Depression Inventory in chronic pain. Pain 2002, 99:289–298.

    Article  PubMed  Google Scholar 

  4. Clauw DJ, Chrousos GP: Chronic pain and fatigue syndromes: overlapping clinical and neuroendocrine features and potential pathogenic mechanisms. Neuroimmunomodulation 1997, 4:143–153.

    Google Scholar 

  5. Chrousos G: Stress, chronic inflammation, and emotional and physical well-being: concurrent effects and chronic sequelae. J Allergy Clin Immunol 2000, 106:S275-S291.

    Article  PubMed  CAS  Google Scholar 

  6. Gallagher RM: The pain depression conundrum: bridging the body and mind. http://www.medscape.com/viewprogram/ 2030. Accessed October 14, 2003.

  7. Briley M: New hope in the treatment of painful symptoms in depression. Curr Opin Investig Drugs 2003, 4:42–45.

    PubMed  CAS  Google Scholar 

  8. Blackburn-Munro G, Blackburn-Munro RE: Chronic pain, chronic stress, and depression: coincidence or consequence? J Neuroendocrinol 2001, 13:1009–1023. The first comprehensive review article to discuss the potential involvement of the HPA axis in chronic pain and depression.

    Article  PubMed  CAS  Google Scholar 

  9. Julius D, Basbaum AI: Molecular mechanisms of nociception. Nature 2001, 13:203–210.

    Article  Google Scholar 

  10. Hunt SP, Mantyh PW: The molecular dynamics of pain control. Nat Rev Neurosci 2001, 2:83–91.

    Article  PubMed  CAS  Google Scholar 

  11. Woolf CJ, Salter MW: Neuronal plasticity: increasing the gain in pain. Science 2000, 288:1765–1768. References 9 through 11 are excellent review articles written by experts in the preclinical pain field. Special emphasis is placed on the role of how genetically manipulated animals have contributed to our understanding of the molecular events involved in peripheral and central sensitizing processes, which underlie many chronic pain states.

    Article  PubMed  CAS  Google Scholar 

  12. Craig AD, Dostrovsky JO: From medulla to thalamus: central nervous system mechanisms of pain modulation. In Textbook of Pain, edn 4. Edited by Wall PD, Melzack R. Churchill-Livingstone: Edinburgh; 1999:183–214.

    Google Scholar 

  13. Price DD: Psychological and neural mechanisms of the affective dimension of pain. Science 2000, 288:1769–1772.

    Article  PubMed  CAS  Google Scholar 

  14. Fields HL, Basbaum AI. Central nervous system mechanisms of pain modulation. In Textbook of Pain, edn 4. Edited by Wall PD, Melzack R. Churchill-Livingstone: Edinburgh; 1999:309–330.

    Google Scholar 

  15. Rainville P: Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 2002, 12:195–204.

    Article  PubMed  CAS  Google Scholar 

  16. Drevets WC: Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001, 11:240–249.

    Article  PubMed  CAS  Google Scholar 

  17. Millan MJ. Descending control of pain. Prog Neurobiol 2002, 66:355–474.

    Article  PubMed  CAS  Google Scholar 

  18. Ren K, Dubner R: Descending modulation in persistent pain: an update. Pain 2002, 100:1–6.

    Article  PubMed  Google Scholar 

  19. Rowbotham MC: Efficacy of opioids in neuropathic pain. In Neuropathic Pain: Pathophysiology and Treatment. Edited by Hansson PT, Fields HL, Hill RG, et al. Seattle: IASP Press; 2001:203–214.

    Google Scholar 

  20. Herrero JF, Romero-Sandoval EA, Gaitan G, et al.: Antinociception and the new COX inhibitors: research approaches and clinical perspectives. CNS Drug Rev 2003, 9:227–252.

    Article  PubMed  CAS  Google Scholar 

  21. Backonja M: Anticonvulsants and antiarrhythmics in the treatment of neuropathic pain syndromes. In Neuropathic Pain: Pathophysiology and Treatment. Edited by Hansson PT, Fields HL, Hill RG, et al. Seattle: IASP Press; 2001:185–201.

    Google Scholar 

  22. Sindrup SH, Jensen TS: Antidepressants in the treatment of neuropathic pain. In Neuropathic Pain: Pathophysiology and Treatment. Edited by Hansson PT, Fields HL, Hill RG, et al. Seattle: IASP Press; 2001:169–183.

    Google Scholar 

  23. Gold PW, Chrousos GP: Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 2002, 7:254–275. This review article provides an up-to-date account of stress axis dysfunction in depressive illness. It also encompasses and explains to the non-expert many of the studies performed by the authors themselves within this very complex field throughout the years.

    Article  PubMed  CAS  Google Scholar 

  24. Herman JP, Cullinan WE: Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997, 20:78–84.

    Article  PubMed  CAS  Google Scholar 

  25. Willner P, Mitchell PJ: The validity of animal models of predisposition to depression. Behav Pharmacol 2002, 13:169–188.

    PubMed  CAS  Google Scholar 

  26. Koehl M, Darnaudery M, Dulluc J, et al.: Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. J Neurobiol 1999, 40:302–315.

    Article  PubMed  CAS  Google Scholar 

  27. Nyirenda MJ, Welberg LA, Seckl JR: Programming hyperglycemia in the rat through prenatal exposure to glucocorticoids: fetal effect or maternal influence? J Endocrinol 2001, 170:653–660.

    Article  PubMed  CAS  Google Scholar 

  28. Alonso SJ, Castellano MA, Quintero M, et al.: Action of antidepressant drugs on maternal stress-induced hypoactivity in female rats. Methods Find Exp Clin Pharmacol 1999, 21:291–295.

    Article  PubMed  CAS  Google Scholar 

  29. Ward HE, Johnson EA, Salm AK, et al.: Effects of prenatal stress on defensive withdrawal behavior and corticotrophin-releasing factor systems in rat brain. Physiol Behav 2000, 70:359–366.

    Article  PubMed  CAS  Google Scholar 

  30. Plotsky PM, Meaney MJ: Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol Brain Res 1993, 18:195–200.

    Article  PubMed  CAS  Google Scholar 

  31. Ladd CO, Huot RL, Thrivikraman KV, et al.: Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res 2000, 122:81–103.

    Article  PubMed  CAS  Google Scholar 

  32. World Health Organization: The World Health Report 2001. Mental health: new understanding, new hope. http:// www.who.int/whr2001/2001/main/en/contents.htm). Accessed October 13, 2003.

  33. Nemeroff CB, Owens MJ: Treatment of mood disorders. Nat Neurosci 2002, 5(suppl):1068–1070.

    Article  PubMed  CAS  Google Scholar 

  34. Manji HK, Chen G: PKC, MAP kinases, and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol Psychiatry 2002, 7(suppl 1):S46-S56.

    Article  PubMed  CAS  Google Scholar 

  35. Reul JM, Stec I, Soder M, et al.: Chronic treatment of rats with the antidepressant amitryptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology 1993, 133:312–320.

    Article  PubMed  CAS  Google Scholar 

  36. Holsboer F, Barden N: Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 1996, 17:187–205.

    Article  PubMed  CAS  Google Scholar 

  37. Holsboer F: The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 1999, 33:181–214.

    Article  PubMed  CAS  Google Scholar 

  38. Gureje O, Simon GE, Von Korff M: A cross-national study of the course of persistent pain in primary care. Pain 2001, 92:195–200.

    Article  PubMed  CAS  Google Scholar 

  39. Fishbain DA, Cutler R, Rosomoff HL, et al.: Chronic pain-associated depression: antecedent or consequence of chronic pain. A review. Clin J Pain 1997, 13:116–137.

    Article  PubMed  CAS  Google Scholar 

  40. McQuay HJ, Moore RA: Antidepressants and chronic pain. BMJ 1997, 314:763–764.

    PubMed  CAS  Google Scholar 

  41. McQuay HJ, Tramer M, Nye BA: A systematic review of antidepressants in neuropathic pain. Pain 1996, 68:217–227.

    Article  PubMed  CAS  Google Scholar 

  42. Ardid D, Marty H, Fialip J, et al.: Comparative effects of different uptake inhibitor antidepressants in two pain tests in mice. Fundam Clin Pharmacol 1992, 6:75–82.

    Article  PubMed  CAS  Google Scholar 

  43. Jett MF, McGuirk J, Waligora D, et al.: The effects of mexiletine, desipramine, and fluoxetine in rat models involving central sensitization. Pain 1997, 69:161–169.

    Article  PubMed  CAS  Google Scholar 

  44. Yokogawa F, Kiuchi Y, Ishikawa Y, et al.: An investigation of monoamine receptors involved in antinociceptive effects of antidepressants. Anesth Analg 2002, 95:163–168.

    Article  PubMed  CAS  Google Scholar 

  45. Ardid D, Guilbaud G: Antinociceptive effects of acute and ‘chronic’ injections of tricyclic antidepressant drugs in a new model of mononeuropathy in rats. Pain 1992, 49:279–287.

    Article  PubMed  CAS  Google Scholar 

  46. Kontinen VK, Kauppila T, Paananen S, et al.: Behavioral measures of depression and anxiety in rats with spinal nerve ligation-induced neuropathy. Pain 1999, 80:341–346.

    Article  PubMed  CAS  Google Scholar 

  47. Monassi CR, Bandler R, Keay KA: A subpopulation of rats show social and sleep-waking changes typical of chronic neuropathic pain following peripheral nerve injury. Eur J Neurosci 2003, 17:1907–1920. This paper describes how rats with neuropathic pain have impaired social functioning and disturbed sleep patterns, which are key behavioral facets of human neuropathic pain.

    Article  PubMed  Google Scholar 

  48. Taylor BK, Akana SF, Peterson MA, et al.: Pituitary-adrenocortical responses to persistent noxious stimuli in the awake rat: endogenous corticosterone does not reduce nociception in the formalin test. Endocrinology 1998, 139:2407–2413.

    Article  PubMed  CAS  Google Scholar 

  49. Blackburn-Munro G, Blackburn-Munro RE: Pain in the brain: Are hormones to blame? Trends Endocrinol Metab 2003, 14:20–27.

    Article  PubMed  CAS  Google Scholar 

  50. Morrow TJ, Paulson PE, Danneman PJ, et al.: Regional changes in forebrain activation during the early and late phase of formalin nociception: analysis using cerebral blood flow in the rat. Pain 1998, 75:355–365.

    Article  PubMed  CAS  Google Scholar 

  51. Paulson PE, Casey KL, Morrow TJ: Long-term changes in behavior and regional cerebral blood flow associated with painful peripheral mononeuropathy in the rat Pain 2002, 95:31–40.

    Article  PubMed  Google Scholar 

  52. Anand KJ, Coskun V, Thrivikraman KV, et al.: Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav 1999, 66:627–637. References 52 and 53 suggest that adverse events experienced by rat pups early in life can have profound implications for the way that they process pain in adulthood. Thus, exposure to stress during pregnancy and before the nervous system is hard-wired may contribute to chronic pain or depressive illness in humans.

    Article  PubMed  CAS  Google Scholar 

  53. Stephan M, Helfritz F, Pabst R, et al.: Postnatally induced differences in adult pain sensitivity depend on genetics, gender and specific experiences: reversal of maternal deprivation effects by additional postnatal tactile stimulation or chronic imipramine treatment. Behav Brain Res 2002, 133:149–158.

    Article  PubMed  CAS  Google Scholar 

  54. Colpaert FC: Evidence that adjuvant arthritis in the rat is associated with chronic pain. Pain 1987, 28:201–222.

    Article  PubMed  CAS  Google Scholar 

  55. Andersen ML, Tufik S: Altered sleep and behavioral patterns of arthritic rats. Sleep Res Online 2000, 3:161–167.

    PubMed  CAS  Google Scholar 

  56. Calvino B, Besson JM, Boehrer A, et al.: Ultrasonic vocalization (22-28 kHz) in a model of chronic pain, the arthritic rat: effects of analgesic drugs. Neuroreport 1996, 7:581–584.

    Article  PubMed  CAS  Google Scholar 

  57. Sternberg EM, Hill JM, Chrousos GP, et al.: Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc Natl Acad Sci U S A 1989, 86:2374–2378.

    Article  PubMed  CAS  Google Scholar 

  58. Chikanza IC, Petrou P, Chrousos G: Perturbations of arginine vasopressin secretion during inflammatory stress: pathophysiologic implications. Ann N Y Acad Sci 2000, 917:825–834.

    Article  PubMed  CAS  Google Scholar 

  59. Harbuz MS: Chronic inflammatory stress. Baillieres Best Pract Res Clin Endocrinol Metab 1999, 13:555–565.

    Article  PubMed  CAS  Google Scholar 

  60. Webster EL, Barrientos RM, Contoreggi C, et al.: Corticotropinreleasing hormone (CRH) antagonist attenuates adjuvant induced arthritis: role of CRH in peripheral inflammation. J Rheumatol 2002, 29:1252–1261.

    PubMed  CAS  Google Scholar 

  61. Wolfe F, Smythe HA, Yunus MB, et al.: The American College of Rheumatology 1990 Criteria for the Classification of Fibromyalgia: report of the Multicenter Criteria Committee. Arthritis Rheum 1990, 33:160–172.

    Article  PubMed  CAS  Google Scholar 

  62. Wolfe F, Ross K, Anderson J, et al.: The prevalence and characteristics of fibromyalgia in the general population. Arthritis Rheum 1995, 38:19–28.

    Article  PubMed  CAS  Google Scholar 

  63. Price DD, Staud R, Robinson ME, et al.: Enhanced temporal summation of second pain and its central modulation in fibromyalgia patients. Pain 2002, 99:49–59. References 63 and 64 are two parts of a recent series of studies conducted by this group that provide a comprehensive account of how altered central processing within pain pathways contributes to the etiology of fibromyalgia.

    Article  PubMed  Google Scholar 

  64. Gracely RH, Petzke F, Wolf JM, et al.: Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum 2002, 46:1333–1343.

    Article  PubMed  Google Scholar 

  65. Parker AJR, Wessely S, Cleare AJ: The neuroendocrinology of chronic fatigue syndrome and fibromyalgia. Psycholo Med 2001, 31:1331–1345.

    CAS  Google Scholar 

  66. Lentjes EG, Griep EN, Boersma JW, et al.: Glucocorticoid receptors, fibromyalgia, and low back pain. Psychoneuroendocrinology 1997, 22:603–614.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackburn-Munro, G. Hypothalamo-pituitary-adrenal axis dysfunction as a contributory factor to chronic pain and depression. Current Science Inc 8, 116–124 (2004). https://doi.org/10.1007/s11916-004-0025-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-004-0025-9

Keywords

Navigation