Skip to main content
Log in

Differential expression and DNA methylation of angiotensin type 1A receptors in vascular tissues during genetic hypertension development

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Angiotensin type 1a receptor (AT1aR) is thought to play an important role in the development of hypertension. However, it is unknown how the AT1aR expression in vascular tissue is changed during the development of hypertension or if the degree of methylation in the AT1aR promoter correlates with the expression of AT1aR. To address these questions, we measured AT1aR mRNA, protein expression, and methylation status of the AT1aR promoter in the aorta and mesenteric artery of male spontaneously hypertensive rats (SHRs) and age-matched Wistar-Kyoto (WKY) rats acting as controls at pre-hypertensive (4 weeks), evolving (10 weeks), and established (20 weeks) stages of hypertension. The expression of the AT1aR mRNA and protein was not different between the SHRs and WKY rats at 4 weeks. However, they were significantly greater in SHRs than in WKY rats at 20 weeks. Bisulfite sequencing revealed that the AT1aR promoter from the aorta and mesenteric artery of the SHRs was progressively hypo-methylated with age as compared with their WKY rat counterparts. These results suggest that the heightened AT1aR expression in SHRs is related to the AT1aR promoter hypo-methylation, which might be a consequence of the increased blood pressure and may be important in the maintenance of high blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Unger T, Paulis L, Sica DA (2011) Therapeutic perspectives in hypertension: novel means for renin-angiotensin-aldosterone system modulation and emerging device-based approaches. Eur Heart J 32(22):2739–2747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bader M (2010) Tissue renin-angiotensin-aldosterone systems: targets for pharmacological therapy. Annu Rev Pharmacol Toxicol 50:439–465

    Article  CAS  PubMed  Google Scholar 

  3. Savoia C, Burger D, Nishigaki N et al (2011) Angiotensin II and the vascular phenotype in hypertension. Expert Rev Mol Med 13:e11

    Article  PubMed  Google Scholar 

  4. Navar LG, Prieto MC, Satou R et al (2011) Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr Opin Pharmacol 11(2):180–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dasgupta C, Zhang L (2011) Angiotensin II receptors and drug discovery in cardiovascular disease. Drug Discov Today 16(1–2):22–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Aplin M, Bonde MM, Hansen JL (2009) Molecular determinants of angiotensin II type 1 receptor functional selectivity. J Mol Cell Cardiol 46(1):15–24

    Article  CAS  PubMed  Google Scholar 

  7. Higuchi S, Ohtsu H, Suzuki H et al (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 112(8):417–428

    Article  CAS  Google Scholar 

  8. Nguyen Dinh Cat A, Touyz RM (2011) Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep 13(2):122–128

    Article  Google Scholar 

  9. Kitami Y, Okura T, Marumoto K et al (1992) Differential gene expression and regulation of type-1 angiotensin II receptor subtypes in the rat. Biochem Biophys Res Commun 188(1):446–452

    Article  CAS  PubMed  Google Scholar 

  10. Llorens-Cortes C, Greenberg B, Huang H et al (1994) Tissular expression and regulation of type 1 angiotensin II receptor subtypes by quantitative reverse transcriptase-polymerase chain reaction analysis. Hypertension 24(5):538–548

    Article  CAS  PubMed  Google Scholar 

  11. Gasc JM, Shanmugam S, Sibony M et al (1994) Tissue-specific expression of type 1 angiotensin II receptor subtypes. An in situ hybridization study. Hypertension 24(5):531–537

    Article  CAS  PubMed  Google Scholar 

  12. Du Y, Guo DF, Inagami T et al (1996) Regulation of ANG II-receptor subtype and its gene expression in adrenal gland. Am J Physiol 271(2 Pt 2):H440–H446

    CAS  PubMed  Google Scholar 

  13. Nguyen Dinh Cat A, Montezano AC, Burger D et al (2013) Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 19(10):1110–1120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Imaizumi S, Miura S, Yahiro E et al (2013) Class- and molecule-specific differential effects of angiotensin II type 1 receptor blockers. Curr Pharm Des 19(17):3002–3008

    Article  CAS  PubMed  Google Scholar 

  15. Frey FJ (2005) Methylation of CpG islands: potential relevance for hypertension and kidney diseases. Nephrol Dial Transplant 20(5):868–869

    Article  CAS  PubMed  Google Scholar 

  16. Bogdarina I, Welham S, King PJ et al (2007) Epigenetic modification of the renin- angiotensin system in the fetal programming of hypertension. Circ Res 100(4):520–526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Friso S, Pizzolo F, Choi SW et al (2008) Epigenetic control of 11 beta- hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis 199(2):323–327

    Article  CAS  PubMed  Google Scholar 

  18. Smolarek I, Wyszko E, Barciszewska AM et al (2010) Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit 16(3):CR149–CR155

    CAS  PubMed  Google Scholar 

  19. Cho HM, Lee HA, Kim HY et al (2011) Expression of Na+–K+–2Cl– cotransporter 1 is epigenetically regulated during postnatal development of hypertension. Am J Hypertens 24(12):1286–1293

    Article  CAS  PubMed  Google Scholar 

  20. Bellavia A, Urch B, Speck M et al (2013) DNA hypomethylation, ambient particulate matter, and increased blood pressure: findings from controlled human exposure experiments. J Am Heart Assoc 2(3):e000212

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wang X, Falkner B, Zhu H et al (2013) A genome-wide methylation study on essential hypertension in young African American males. PLoS One 8(1):e53938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wang F, Demura M, Cheng Y et al (2014) Dynamic CCAAT/enhancer binding protein-associated changes of DNA methylation in the angiotensinogen gene. Hypertension 63(2):281–288

    Article  CAS  PubMed  Google Scholar 

  23. Meissner A, Mikkelsen TS, Gu H et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492

    Article  CAS  PubMed  Google Scholar 

  25. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Maunakea AK, Nagarajan RP, Bilenky M et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  28. Viswanathan M, Tsutsumi K, Correa FM et al (1991) Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem Biophys Res Commun 179(3):1361–1367

    Article  CAS  PubMed  Google Scholar 

  29. Millis RM (2011) Epigenetics and hypertension. Curr Hypertens Rep 13(1):21–28

    Article  CAS  PubMed  Google Scholar 

  30. Pojoga LH, Williams JS, Yao TM et al (2011) Histone demethylase LSD1 deficiency during high-salt diet is associated with enhanced vascular contraction, altered NO-cGMP relaxation pathway, and hypertension. Am J Physiol Heart Circ Physiol 301(5):H1862–H1871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Chu CH, Lo JF, Hu WS et al (2012) Histone acetylation is essential for ANG-II-induced IGF-IIR gene expression in H9c2 cardiomyoblast cells and pathologically hypertensive rat heart. J Cell Physiol 227(1):259–268

    Article  CAS  PubMed  Google Scholar 

  32. Lee HA, Lee DY, Lee HJ et al (2012) Enrichment of (pro)renin receptor promoter with activating histone codes in the kidneys of spontaneously hypertensive rats. J Renin Angiotensin Aldosterone Syst 13(1):11–18

    Article  CAS  PubMed  Google Scholar 

  33. Lee HA, Cho HM, Lee DY et al (2012) Tissue-specific upregulation of angiotensin-converting enzyme 1 in spontaneously hypertensive rats through histone code modifications. Hypertension 59(3):621–626

    Article  CAS  PubMed  Google Scholar 

  34. Batkai S, Thum T (2012) MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr Hypertens Rep 14(1):79–87

    Article  CAS  PubMed  Google Scholar 

  35. Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398

    Article  CAS  PubMed  Google Scholar 

  36. Marx V (2012) Epigenetics: reading the second genomic code. Nature 491(7422):143–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 81200193 and No. 81273507).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui Li or Chunyu Zeng.

Additional information

Fang Pei and Xinquan Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, F., Wang, X., Yue, R. et al. Differential expression and DNA methylation of angiotensin type 1A receptors in vascular tissues during genetic hypertension development. Mol Cell Biochem 402, 1–8 (2015). https://doi.org/10.1007/s11010-014-2295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2295-9

Keywords

Navigation