Skip to main content

Advertisement

Log in

Understanding Systemic Lupus Erythematosus Physiopathology in the Light of Primary Immunodeficiencies

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

Associations between systemic lupus erythematosus (SLE) and primary immunodeficiencies (PIDs) were analyzed to gain insight into the physiopathology of SLE. Some PIDs have been consistently associated with SLE or lupus-like manifestations: (a) homozygous deficiencies of the early components of the classical complement pathway in the following decreasing order: in C1q, 93% of affected patients developed SLE; in C4, 75%; in C1r/s, 57%; and in C2, up to 25%; (b) female carriers of X-linked chronic granulomatous disease allele; and (c) IgA deficiency, present in around 5% of juvenile SLE.

Discussion

In the first two groups, disturbances of cellular waste-disposal have been proposed as the main mechanisms of pathogenesis. On the other hand and very interestingly, there are PIDs systematically associated with several autoimmune manifestations in which SLE has not been described, such as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), immunedysregulation polyendocrinopathy enteropathy X-linked (IPEX), and autoimmune lymphoproliferative syndrome (ALPS), suggesting that mechanisms considered as critical players for induction and maintenance of tolerance to autoantigens, such as (1) AIRE-mediated thymic negative selection of lymphocytes, (2) Foxp3+ regulatory T cell-mediated peripheral tolerance, and (3) deletion of auto-reactive lymphocytes by Fas-mediated apoptosis, could not be relevant in SLE physiopathology. The non-description of SLE and neither the most characteristic SLE clinical features among patients with agammaglobulinemia are also interesting observations, which reinforce the essential role of B lymphocytes and antibodies for SLE pathogenesis.

Conclusion

Therefore, monogenic PIDs represent unique and not fully explored human models for unraveling components of the conundrum represented by the physiopathology of SLE, a prototypical polygenic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Geha RS, Notarangelo L, Casanova J-L, Chapel H, Conley ME, Fischer A, Hammarström L, Nonoyama S, Ochs HD, Puck JM, Roifman C, Seger R, Wedgwood J. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol 2007;120:776–94.

    Article  PubMed  Google Scholar 

  2. Carneiro-Sampaio M, Coutinho A. Tolerance and autoimmunity: lessons at the bedside of primary immunodeficiencies. Adv Immunol 2007;95:51–82.

    Article  PubMed  CAS  Google Scholar 

  3. Navratil JS, Korb LC, Ahearn JM. Systemic lupus erythematosus and complement deficiency: clues to a novel role for the classical complement pathway in the maintenance of immune tolerance. Immunopharmacology 1999;42:47–52.

    Article  PubMed  CAS  Google Scholar 

  4. Pickering MC, Botto M, Taylor PR, Walport MJ. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 2000;76:227–34.

    PubMed  CAS  Google Scholar 

  5. Manderson AP, Botto M, Walport MJ. The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 2004;22:431–56.

    Article  PubMed  CAS  Google Scholar 

  6. Sjöholm AG, Jönsson G, Braconier JH, Sturfelt G, Truedsson L. Complement deficiency and disease: an update. Mol Immunol 2006;43:78–85.

    Article  PubMed  CAS  Google Scholar 

  7. Koide M, Shirahama S, Tokura Y, Takigawa M, Hayakawa M, Furukawa F. Lupus erythematosus associated with C1 inhibitor deficiency. J Dermatol 2002;29:503–7.

    PubMed  Google Scholar 

  8. Kemper C, Chan AC, Green J, Brett KA, Murphy KM, Atkinson P. Activation of human CD4+cells with CD3 and CD466 induces a T-regulatory cell 1 phenotype. Nature 2003;42:388–92.

    Article  CAS  Google Scholar 

  9. Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore). 2000;79:155–69.

    Article  CAS  PubMed  Google Scholar 

  10. Cale CM, Morton L, Goldblatt D. Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol 2007;148:79–84.

    PubMed  CAS  Google Scholar 

  11. Brown JR, Goldblatt D, Buddle J, Morton L, Thrasher AJ. Diminished production of anti-inflammatory mediators during neutrophil apoptosis and macrophage phagocytosis in chronic granulomatous disease. J Leukoc Biol 2003;73:591–9.

    Article  PubMed  CAS  Google Scholar 

  12. Sanford AN, Suriano AR, Herche D, Dietzmann K, Sullivan KE. Abnormal apoptosis in chronic granulomatous disease and autoantibody production characteristic of lupus. Rheumatology 2006;45:178–81.

    Article  PubMed  CAS  Google Scholar 

  13. Liblau RS, Bach JF. Selective IgA deficiency and autoimmunity. Int Arch Allergy Immunol 1992;99:16–27.

    Article  PubMed  CAS  Google Scholar 

  14. Rankin EC, Isenberg DA. IgA deficiency and SLE: prevalence in a clinic population and a review of the literature. Lupus 1997;6:390–4.

    Article  PubMed  CAS  Google Scholar 

  15. Cassidy JT, Kitson RK, Selby CL. Selective IgA deficiency in children and adults with systemic lupus erythematosus. Lupus 2007;16:647–50.

    Article  PubMed  CAS  Google Scholar 

  16. Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffié C, Hénin D, Benhamou M, Pretolani M, Blank U, Monteiro RC. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity 2005;22:31–42.

    PubMed  CAS  Google Scholar 

  17. Ahonen P, Myllarniemi S, Sipila I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990;322:1829–36.

    PubMed  CAS  Google Scholar 

  18. Betterle C, Greggio NA, Volpato M. Autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab 1998;83:1049–55.

    Article  PubMed  CAS  Google Scholar 

  19. Perheentupä J. Extensive Clinical experience: autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. J Clin Endocrinol Metab 2006;91:2843–50.

    Article  PubMed  CAS  Google Scholar 

  20. Perniola R, Falorni A, Clemente MG, Forini F, Accogli E, Lobreglio G. Organ-specific and non-organ-specific autoantibodies in children and young adults with autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED). Eur J Endocrinol 2000;143:497–503.

    Article  PubMed  CAS  Google Scholar 

  21. Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of immune dysregulation, polyendocrinopathy, and X-linked inheritance (IPEX), a syndrome. J Med Genet 2002;39:537–45.

    Article  PubMed  CAS  Google Scholar 

  22. Ochs HD, Ziegler SF, Torgerson TR. FOXP3 acts as a rheostat of the immune response. Immunol Rev 2005;203:156–64.

    Article  PubMed  CAS  Google Scholar 

  23. Torgerson T. Regulatory T cells in human autoimmune diseases. Springer Semin Immun 2006;28:63–76.

    Article  CAS  Google Scholar 

  24. Oliveira JB, Fleisher T. Autoimmune lymproliferative syndrome. Curr Opin Allergy Clin Immunol, 2004;4:497–503.

    Article  CAS  Google Scholar 

  25. Oliveira JB, Bidère N, Niemela JE, Zheng L, Sakai K, Nix CP, Danner RL, Barb J, Munson PJ, Puck JM, Dale J, Straus SE, Fleisher TA, Lenardo MJ. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A 2007;104:8953–8.

    Article  PubMed  CAS  Google Scholar 

  26. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 1996;98:1107–13.

    Article  PubMed  CAS  Google Scholar 

  27. Liphaus BL, Kiss MH, Carrasco S, Goldenstein-Schainberg C. Increased Fas and Bcl-2 expression on peripheral cells from patients with active juvenile-onset systemic lupus erythematosus. J Rheum 2007;34:1580–4.

    PubMed  Google Scholar 

  28. Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Italian Pediatric Group for XLA-AIEOP. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol 2002;104:221–30.

    Article  PubMed  CAS  Google Scholar 

  29. Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine (Baltimore) 2006;85:193–202.

    Article  Google Scholar 

  30. Howard V, Greene JM, Pahwa S, Winkelstein JA, Boyle JM, Kocak M, et al. The health status and quality of life of adults with X-linked agammaglobulinemia. Clin Immunol 2006;118:201–8.

    Article  PubMed  CAS  Google Scholar 

  31. Fernandez-Castro M, Mellor-Pita S, Citores MJ, Muñoz P, Tutor-Ureta P, Silva L, Vargas JA, Yebra-Bango M, Andreu JL. Common variable immunodeficiency in systemic lupus erythematosus. Semin Arthritis Rheum 2007;36:238–45.

    Article  PubMed  Google Scholar 

  32. Wang J, Cunningham-Rundles C. Treatment and outcome of autoimmune hematologic disease in common variable immunodeficiency (CVID). J Autoimmun 2005;25:57–62.

    Article  PubMed  CAS  Google Scholar 

  33. Glocker E, Ehl S, Grimbacher B. Common variable immunodeficiency in children. Curr Opin Pediatr 2007;19:685–92.

    PubMed  Google Scholar 

  34. Salzer U, Maul-Pavicic A, Cunningham-Rundles C, Urschel S, Belohradsky BH, Litzman J, Holm A, et al. ICOS deficiency in patients with common variable immunodeficiency. Clin Immunol 2004;113:234–40.

    Article  PubMed  CAS  Google Scholar 

  35. Salzer U, Chapel HM, Webster AD, Pan-Hammarström Q, Schmitt-Graeff A, Schlesier M, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 2005;37:820–8.

    Article  PubMed  CAS  Google Scholar 

  36. Levy J, Espanol-Boren T, Thomas C, Fischer A, Tovo P, Bordigoni P, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 1997;131:47–54.

    Article  PubMed  CAS  Google Scholar 

  37. Winkelstein JA, Marino MC, Ochs H, Fuleihan R, Scholl PR, Geha R, et al. The X-linked hyper-IgM syndrome. Medicine 2003;82:373–84.

    Article  PubMed  CAS  Google Scholar 

  38. Lougaris V, Badolato R, Ferrari S, Plebani A. Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features. Immunol Rev 2005;203:48–66.

    Article  PubMed  CAS  Google Scholar 

  39. Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest 1996;97:2063–73.

    Article  PubMed  CAS  Google Scholar 

  40. Durandy A, Notarangelo L, Revy P, Imai K, Fischer A. Hyper-immunoglobulin M syndromes caused by intrinsic B-lymphocyte defects. Immunol Rev 2005;203:67–79.

    Article  PubMed  CAS  Google Scholar 

  41. Melegari A, Mascia MT, Sandri G, Carbonieri A. Immunodeficiency and autoimmune phenomena in female hyper-IgM syndrome. Ann N Y Acad Sci 2007;1109:106–8.

    Article  PubMed  Google Scholar 

  42. Shrinath M, Walter JH, Haeney M, Couriel JM, Lewis MA, Herrick AL. Prolidase deficiency and systemic lupus erythematosus. Arch Dis Child 1997;76:441–4.

    Article  PubMed  CAS  Google Scholar 

  43. Dupuis-Girod S, Medioni J, Haddad E, Quartier P, Cavazzana-Calvo M, Le Deist F, et al. Autoimmunity in Wiskott–Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics 2003;111:e622–7.

    Article  PubMed  Google Scholar 

  44. Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott–Aldrich syndrome. J Pediatr 1994;125:876–85.

    Article  PubMed  CAS  Google Scholar 

  45. Rosenzweig SD, Holland SM. Defects in the interferon-γ and interleukin 12 pathways. Immunol Rev 2005;3:38–47.

    Article  Google Scholar 

  46. Kobrynski LJ, Sullivan KE. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet. 2007;370:1443–52.

    Article  PubMed  CAS  Google Scholar 

  47. de Haas M, Kleijer M, van Zwieten R, Roos D, von dem Borne AEGK. Neutrophil FcγRIIIb deficiency, nature and clinical consequences: a study of 21 individuals from 14 families. Blood 1995;86:2403–13.

    PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (grant 2002/05880-4 to MC-S) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (grants 302469/2005-2 to CAAS and 34802/2005-0 to MC-S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda Carneiro-Sampaio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carneiro-Sampaio, M., Liphaus, B.L., Jesus, A.A. et al. Understanding Systemic Lupus Erythematosus Physiopathology in the Light of Primary Immunodeficiencies. J Clin Immunol 28 (Suppl 1), 34–41 (2008). https://doi.org/10.1007/s10875-008-9187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-008-9187-2

Keywords

Navigation