Skip to main content

Advertisement

Log in

Cell death in rheumatoid arthritis

  • Cell Death and Disease
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis plays a pivotal role in tissue homoeostasis both under physiological and pathological conditions and several studies have shown that some characteristic changes in the composition and structure of the inflamed synovial membrane in rheumatoid arthritis (RA) are linked to an altered apoptotic response of synovial cells. As a result, a hyperplastic synovial tissue is generated that mediates the progressive destruction of articular cartilage and bone. In addition to inflammatory cells, these changes most prominently affect resident fibroblast-like cells that have been demonstrated to be of utmost importance for joint destruction. Once activated, these cells pass through prominent molecular changes resulting in an aggressive, invasive behaviour. Research of the past years has identified different mechanisms that prevent synovial cells in RA from apoptosis. They include changes in the mitochondrial pathway as well as altered expression of downstream modulators of death receptors and transcriptional regulators such as NFkappaB. This review summarises our recent progress in understanding aberrant apoptosis in the RA synovial membrane and points to possibilities of intervening specifically with this aspect of the pathogenesis of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423(6937):356–361. doi:10.1038/nature01661

    Article  PubMed  CAS  Google Scholar 

  2. Pap T, Gay S (2009) Fibroblasts and fibroblast-like synoviocytes. In: Firestein GS, Budd RC, Harris T, McInnes IB, Ruddy S, Sergent JS (eds) Kelly’s textbook of rheumatology, 8th edn. Saunders Elsevier, Philadelphia, pp 201–214

    Google Scholar 

  3. Pap T, Müller-Ladner U, Gay RE, Gay S (2000) Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res 2(5):361–367. doi:10.1186/ar113

    Article  PubMed  CAS  Google Scholar 

  4. Müller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE et al (1996) Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol 149(5):1607–1615

    PubMed  Google Scholar 

  5. Pap T, Cinski A, Baier A, Gay S, Meinecke I (2003) Modulation of pathways regulating both the invasiveness and apoptosis in rheumatoid arthritis synovial fibroblasts. Jt Bone Spine 70(6):477–479. doi:10.1016/S1297-319X(03)00162-3

    Article  Google Scholar 

  6. Baier A, Meinecke I, Gay S, Pap T (2003) Apoptosis in rheumatoid arthritis. Curr Opin Rheumatol 15(3):274–279. doi:10.1097/00002281-200305000-00015

    Article  PubMed  CAS  Google Scholar 

  7. Firestein GS, Yeo M, Zvaifler NJ (1995) Apoptosis in rheumatoid arthritis synovium. J Clin Invest 96:1631–1638. doi:10.1172/JCI118202

    Article  PubMed  CAS  Google Scholar 

  8. Matsumoto S, Müller Ladner U, Gay RE, Nishioka K, Gay S (1996) Ultrastructural demonstration of apoptosis, Fas and Bcl-2 expression of rheumatoid synovial fibroblasts. J Rheumatol 23(8):1345–1352

    PubMed  CAS  Google Scholar 

  9. Perlman H, Liu H, Georganas C, Koch AE, Shamiyeh E, Haines GKIII et al (2001) Differential expression pattern of the antiapoptotic proteins, Bcl-2 and FLIP, in experimental arthritis. Arthritis Rheum 44(12):2899–2908. doi:10.1002/1529-0131(200112)44:12<2899::AID-ART478>3.0.CO;2-X

    Article  PubMed  CAS  Google Scholar 

  10. Franz JK, Pap T, Hummel KM, Nawrath M, Aicher WK, Shigeyama Y et al (2000) Expression of sentrin, a novel antiapoptotic molecule, at sites of synovial invasion in rheumatoid arthritis. Arthritis Rheum 43(3):599–607. doi:10.1002/1529-0131(200003)43:3<599::AID-ANR17>3.0.CO;2-T

    Article  PubMed  CAS  Google Scholar 

  11. Zhang HG, Wang Y, Xie JF, Liang X, Liu D, Yang P et al (2001) Regulation of tumor necrosis factor alpha-mediated apoptosis of rheumatoid arthritis synovial fibroblasts by the protein kinase Akt. Arthritis Rheum 44(7):1555–1567. doi:10.1002/1529-0131(200107)44:7<1555::AID-ART279>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  12. Bai S, Liu H, Chen KH, Eksarko P, Perlman H, Moore TL et al (2004) NF-kappaB-regulated expression of cellular FLIP protects rheumatoid arthritis synovial fibroblasts from tumor necrosis factor alpha-mediated apoptosis. Arthritis Rheum 50(12):3844–3855. doi:10.1002/art.20680

    Article  PubMed  CAS  Google Scholar 

  13. Drynda A, Quax PH, Neumann M, van der Laan WH, Pap G, Drynda S et al (2005) Gene transfer of tissue inhibitor of metalloproteinases-3 reverses the inhibitory effects of TNF-alpha on Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. J Immunol 174(10):6524–6531

    PubMed  CAS  Google Scholar 

  14. Meinecke I, Cinski A, Baier A, Peters MA, Dankbar B, Wille A et al (2007) Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc Natl Acad Sci USA 104(12):5073–5078. doi:10.1073/pnas.0608773104

    Article  PubMed  CAS  Google Scholar 

  15. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489. doi:10.1016/S0092-8674(00)80434-1

    Article  PubMed  CAS  Google Scholar 

  16. Perlman H, Georganas C, Pagliari LJ, Koch AE, Haines KIII, Pope RM (2000) Bcl-2 expression in synovial fibroblasts is essential for maintaining mitochondrial homeostasis and cell viability. J Immunol 164(10):5227–5235

    PubMed  CAS  Google Scholar 

  17. Kurowska M, Rudnicka W, Kontny E, Janicka I, Chorazy M, Kowalczewski J et al (2002) Fibroblast-like synoviocytes from rheumatoid arthritis patients express functional IL-15 receptor complex: endogenous IL-15 in autocrine fashion enhances cell proliferation and expression of Bcl-x(L) and Bcl- 2. J Immunol 169(4):1760–1767

    PubMed  CAS  Google Scholar 

  18. Klingelhofer J, Senolt L, Baslund B, Nielsen GH, Skibshoj I, Pavelka K et al (2007) Up-regulation of metastasis-promoting S100A4 (Mts-1) in rheumatoid arthritis: putative involvement in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 56(3):779–789. doi:10.1002/art.22398

    Article  PubMed  CAS  Google Scholar 

  19. Liu H, Eksarko P, Temkin V, Haines GK III, Perlman H, Koch AE et al (2005) Mcl-1 is essential for the survival of synovial fibroblasts in rheumatoid arthritis. J Immunol 175(12):8337–8345

    PubMed  CAS  Google Scholar 

  20. Kammouni W, Wong K, Ma G, Firestein GS, Gibson SB, El-Gabalawy HS (2007) Regulation of apoptosis in fibroblast-like synoviocytes by the hypoxia-induced Bcl-2 family member Bcl-2/adenovirus E1B 19-kd protein-interacting protein 3. Arthritis Rheum 56(9):2854–2863. doi:10.1002/art.22853

    Article  PubMed  CAS  Google Scholar 

  21. Morel J, Audo R, Hahne M, Combe B (2005) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rheumatoid arthritis synovial fibroblast proliferation through mitogen-activated protein kinases and phosphatidylinositol 3-kinase/Akt. J Biol Chem 280(16):15709–15718. doi:10.1074/jbc.M414469200

    Article  PubMed  CAS  Google Scholar 

  22. Miranda-Carus ME, Balsa A, Benito-Miguel M, De Ayala CP, Martin-Mola E (2004) Rheumatoid arthritis synovial fluid fibroblasts express TRAIL-R2 (DR5) that is functionally active. Arthritis Rheum 50(9):2786–2793. doi:10.1002/art.20501

    Article  PubMed  CAS  Google Scholar 

  23. Ichikawa K, Liu W, Fleck M, Zhang H, Zhao L, Ohtsuka T et al (2003) TRAIL-R2 (DR5) mediates apoptosis of synovial fibroblasts in rheumatoid arthritis. J Immunol 171(2):1061–1069

    PubMed  CAS  Google Scholar 

  24. Wang J, Li C, Liu Y, Mei W, Yu S, Liu C et al (2006) JAB1 determines the response of rheumatoid arthritis synovial fibroblasts to tumor necrosis factor-alpha. Am J Pathol 169(3):889–902. doi:10.2353/ajpath.2006.051161

    Article  PubMed  CAS  Google Scholar 

  25. Zhang HG, Huang N, Liu D, Bilbao L, Zhang X, Yang P et al (2000) Gene therapy that inhibits nuclear translocation of nuclear factor kappaB results in tumor necrosis factor alpha-induced apoptosis of human synovial fibroblasts. Arthritis Rheum 43(5):1094–1105. doi:10.1002/1529-0131(200005)43:5<1094::AID-ANR20>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  26. Miyashita T, Kawakami A, Nakashima T, Yamasaki S, Tamai M, Tanaka F et al (2004) Osteoprotegerin (OPG) acts as an endogenous decoy receptor in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis of fibroblast-like synovial cells. Clin Exp Immunol 137(2):430–436. doi:10.1111/j.1365-2249.2004.02534.x

    Article  PubMed  CAS  Google Scholar 

  27. Hayashi S, Miura Y, Nishiyama T, Mitani M, Tateishi K, Sakai Y et al (2007) Decoy receptor 3 expressed in rheumatoid synovial fibroblasts protects the cells against Fas-induced apoptosis. Arthritis Rheum 56(4):1067–1075. doi:10.1002/art.22494

    Article  PubMed  CAS  Google Scholar 

  28. Pierer M, Brentano F, Rethage J, Wagner U, Hantzschel H, Gay RE et al (2007) The TNF superfamily member LIGHT contributes to survival and activation of synovial fibroblasts in rheumatoid arthritis. Rheumatology (Oxford) 46(7):1063–1070. doi:10.1093/rheumatology/kem063

    Article  CAS  Google Scholar 

  29. Kang YM, Kim SY, Kang JH, Han SW, Nam EJ, Kyung HS et al (2007) LIGHT up-regulated on B lymphocytes and monocytes in rheumatoid arthritis mediates cellular adhesion and metalloproteinase production by synoviocytes. Arthr Rheum 56(4):1106–1117. doi:10.1002/art.22493

    Article  CAS  Google Scholar 

  30. Kitagawa A, Miura Y, Saura R, Mitani M, Ishikawa H, Hashiramoto A et al (2006) Anchorage on fibronectin via VLA-5 (alpha5beta1 integrin) protects rheumatoid synovial cells from Fas-induced apoptosis. Ann Rheum Dis 65(6):721–727. doi:10.1136/ard.2005.041707

    Article  PubMed  CAS  Google Scholar 

  31. Palao G, Santiago B, Galindo M, Paya M, Ramirez JC, Pablos JL (2004) Down-regulation of FLIP sensitizes rheumatoid synovial fibroblasts to Fas-mediated apoptosis. Arthritis Rheum 50(9):2803–2810. doi:10.1002/art.20453

    Article  PubMed  CAS  Google Scholar 

  32. Schedel J, Gay RE, Kuenzler P, Seemayer C, Simmen B, Michel BA et al (2002) FLICE-inhibitory protein expression in synovial fibroblasts and at sites of cartilage and bone erosion in rheumatoid arthritis. Arthritis Rheum 46(6):1512–1518. doi:10.1002/art.10309

    Article  PubMed  CAS  Google Scholar 

  33. Kobayashi T, Okamoto K, Kobata T, Hasunuma T, Kato T, Hamada H et al (2000) Differential regulation of Fas-mediated apoptosis of rheumatoid synoviocytes by tumor necrosis factor alpha and basic fibroblast growth factor is associated with the expression of apoptosis-related molecules. Arthritis Rheum 43(5):1106–1114. doi:10.1002/1529-0131(200005)43:5<1106::AID-ANR21>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  34. Catrina AI, Ulfgren AK, Lindblad S, Grondal L, Klareskog L (2002) Low levels of apoptosis and high FLIP expression in early rheumatoid arthritis synovium. Ann Rheum Dis 61(10):934–936. doi:10.1136/ard.61.10.934

    Article  PubMed  CAS  Google Scholar 

  35. Melchior F (2000) SUMO–nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591–626. doi:10.1146/annurev.cellbio.16.1.591

    Article  PubMed  CAS  Google Scholar 

  36. Muller S, Hoege C, Pyrowolakis G, Jentsch S (2001) SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol 2(3):202–210. doi:10.1038/35056591

    Article  PubMed  CAS  Google Scholar 

  37. Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R et al (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280(2):275–286. doi:10.1006/jmbi.1998.1839

    Article  PubMed  CAS  Google Scholar 

  38. Zhang FP, Mikkonen L, Toppari J, Palvimo JJ, Thesleff I, Janne OA (2008) Sumo-1 function is dispensable in normal mouse development. Mol Cell Biol 28(17):5381–5390. doi:10.1128/MCB.00651-08

    Article  PubMed  CAS  Google Scholar 

  39. Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M et al (1999) Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 18(22):6462–6471. doi:10.1093/emboj/18.22.6462

    Article  PubMed  CAS  Google Scholar 

  40. Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275(18):13321–13329. doi:10.1074/jbc.275.18.13321

    Article  PubMed  CAS  Google Scholar 

  41. Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J 18(22):6455–6461. doi:10.1093/emboj/18.22.6455

    Article  PubMed  CAS  Google Scholar 

  42. Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2(2):233–239. doi:10.1016/S1097-2765(00)80133-1

    Article  PubMed  CAS  Google Scholar 

  43. Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135(6 Pt 1):1457–1470. doi:10.1083/jcb.135.6.1457

    Article  PubMed  CAS  Google Scholar 

  44. Muller S, Matunis MJ, Dejean A (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17(1):61–70. doi:10.1093/emboj/17.1.61

    Article  PubMed  CAS  Google Scholar 

  45. Okura T, Gong L, Kamitani T, Wada T, Okura I, Wei CF et al (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 157(10):4277–4281

    PubMed  CAS  Google Scholar 

  46. Schirmer M, Vallejo AN, Weyand CM, Goronzy JJ (1998) Resistance to apoptosis and elevated expression of Bcl-2 in clonally expanded CD4 + CD28- T cells from rheumatoid arthritis patients. J Immunol 161(2):1018–1025

    PubMed  CAS  Google Scholar 

  47. Zhang J, Bardos T, Mikecz K, Finnegan A, Glant TT (2001) Impaired Fas signaling pathway is involved in defective T cell apoptosis in autoimmune murine arthritis. J Immunol 166(8):4981–4986

    PubMed  CAS  Google Scholar 

  48. Salmon M, Scheel Toellner D, Huissoon AP, Pilling D, Shamsadeen N, Hyde H et al (1997) Inhibition of T cell apoptosis in the rheumatoid synovium. J Clin Invest 99(3):439–446. doi:10.1172/JCI119178

    Article  PubMed  CAS  Google Scholar 

  49. Nanki T, Hayashida K, El Gabalawy HS, Suson S, Shi K, Girschick HJ et al (2000) Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4 + T cell accumulation in rheumatoid arthritis synovium. J Immunol 165(11):6590–6598

    PubMed  CAS  Google Scholar 

  50. Suzuki Y, Rahman M, Mitsuya H (2001) Diverse transcriptional response of CD4(+) T cells to stromal cell- derived factor (SDF)-1: cell survival promotion and priming effects of SDF-1 on CD4(+) T cells. J Immunol 167(6):3064–3073

    PubMed  CAS  Google Scholar 

  51. Lindhout E, van Eijk M, van Pel M, Lindeman J, Dinant HJ, de Groot C (1999) Fibroblast-like synoviocytes from rheumatoid arthritis patients have intrinsic properties of follicular dendritic cells. J Immunol 162(10):5949–5956

    PubMed  CAS  Google Scholar 

  52. Hayashida K, Shimaoka Y, Ochi T, Lipsky PE (2000) Rheumatoid arthritis synovial stromal cells inhibit apoptosis and up- regulate Bcl-xL expression by B cells in a CD49/CD29-CD106-dependent mechanism. J Immunol 164(2):1110–1116

    PubMed  CAS  Google Scholar 

  53. Reparon-Schuijt CC, van Esch WJ, van Kooten C, Rozier BC, Levarht EW, Breedveld FC et al (2000) Regulation of synovial B cell survival in rheumatoid arthritis by vascular cell adhesion molecule 1 (CD106) expressed on fibroblast-like synoviocytes. Arthritis Rheum 43(5):1115–1121. doi:10.1002/1529-0131(200005)43:5<1115::AID-ANR22>3.0.CO;2-A

    Article  PubMed  CAS  Google Scholar 

  54. Nakajima K, Itoh K, Nagatani K, Okawa-Takatsuji M, Fujii T, Kuroki H et al (2007) Expression of BAFF and BAFF-R in the synovial tissue of patients with rheumatoid arthritis. Scand J Rheumatol 36(5):365–372. doi:10.1080/03009740701286615

    Article  PubMed  CAS  Google Scholar 

  55. Ohata J, Zvaifler NJ, Nishio M, Boyle DL, Kalled SL, Carson DA et al (2005) Fibroblast-like synoviocytes of mesenchymal origin express functional B cell-activating factor of the TNF family in response to proinflammatory cytokines. J Immunol 174(2):864–870

    PubMed  CAS  Google Scholar 

  56. Alsaleh G, Messer L, Semaan N, Boulanger N, Gottenberg JE, Sibilia J et al (2007) BAFF synthesis by rheumatoid synoviocytes is positively controlled by alpha5beta1 integrin stimulation and is negatively regulated by tumor necrosis factor alpha and Toll-like receptor ligands. Arthritis Rheum 56(10):3202–3214. doi:10.1002/art.22915

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korb, A., Pavenstädt, H. & Pap, T. Cell death in rheumatoid arthritis. Apoptosis 14, 447–454 (2009). https://doi.org/10.1007/s10495-009-0317-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0317-y

Keywords

Navigation