Skip to main content

Advertisement

Log in

Cellular regulators of protein kinase CK2

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Protein phosphorylation is a key regulatory post-translational modification and is involved in the control of many cellular processes. Protein kinase CK2, formerly known as casein kinase II, which is a ubiquitous and highly conserved protein serine/threonine kinase, plays a central role in the control of a variety of pathways in cell proliferation, transformation, apoptosis and senescence. An understanding of the regulation of such a central protein kinase would greatly help our comprehension of the regulation of many pathways in cellular regulation. A number of reviews have addressed the detection, the development, and the characterization of inhibitors of CK2. The present review focuses on possible natural regulators of CK2, i.e. proteins and other cellular factors that bind to CK2 and thereby regulate its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12:226–230

    Article  PubMed  CAS  Google Scholar 

  • Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K (2005) Targeting CK2 for cancer therapy. Anticancer Drugs 16:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Bandhakavi S, McCann RO, Hanna DE, Glover CVC (2003) A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol Chem 278:2829–2836

    Article  PubMed  CAS  Google Scholar 

  • Bansal PK, Mishra A, High AA, Abdulle R, Kitagawa K (2009) Sgt1 dimerization is negatively regulated by protein kinase CK2-mediated phosphorylation at S361. J Biol Chem 284:18692–18698

    Article  PubMed  CAS  Google Scholar 

  • Barker CJ, Illies C, Gaboardi GC, Berggren PO (2009) Inositol pyrophosphates: structure, enzymology and function. Cell Mol Life Sci 66:3851–3871

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol triphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  • Bertrand L, Sayed MF, Pei XY, Parisini E, Dhanaraj V, Bolanos-Garcia VM, Allende JE, Blundell TL (2004) Structure of the regulatory subunit of CK2 in the presence of a p21WAF1 peptide demonstrates flexibility of the acidic loop. Acta Crystallogr D Biol Crystallogr 60:1698–1704

    Article  PubMed  CAS  Google Scholar 

  • Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F, Bouche G (1996) Fibroblast growth factor-2 binds to the regulatory b subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 271:24781–24787

    Article  PubMed  CAS  Google Scholar 

  • Burnett G, Kennedy EP (1954) The enzymatic phosphorylation of proteins. J Biol Chem 211:969–980

    PubMed  CAS  Google Scholar 

  • Chaudhry PS, Nanez R, Casillas ER (1991) Purification and characterization of polyamine-stimulated protein kinase (casein kinase II) from bovine spermatozoa. Arch Biochem Biophys 288:337–342

    Article  PubMed  CAS  Google Scholar 

  • Chen HK, Pai CY, Huang JY, Yeh NH (1999) Human Nopp 140, which interacts with RNA polymerase I: implications for rRNA gene transcription and nucleolar structural organization. Mol Cell Biol 19:8536–8546

    PubMed  CAS  Google Scholar 

  • Cochet C, Chambaz EM (1983) Oligomeric structure and catalytic of G-type casein kinase. Isolation of the two subunits and renaturation experiments. J Biol Chem 258:1403–1406

    PubMed  CAS  Google Scholar 

  • Cooper KD, Shukla JB, Rennert OM (1978) Polyamine compartmentalization in various human disease states. Clin Chim Acta 82:1–7

    Article  PubMed  CAS  Google Scholar 

  • Cozza G, Bortolato A, Moro S (2009) How druggable is protein kinase CK2? Med Res Rev 30:419–462

    Google Scholar 

  • Donella-Deana A, Cesaro L, Sarno S, Brunati AM, Ruzzene M, Pinna LA (2001) Autocatalytic tyrosine-phosphorylation of protein kinase CK2 a and a' subunits: implication of Tyr182. Biochem J 357:563–567

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, Wiman KG, Mercer WE, Kastan MB, Kohn KW, Elledge SJ, Kinzler KW, Vogelstein B (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174

    PubMed  CAS  Google Scholar 

  • Faust M, Montenarh M (2000) Subcellular localization of protein kinase CK2: a key to its function. Cell Tissue Res 301:329–340

    Article  PubMed  CAS  Google Scholar 

  • Filhol O, Cochet C (2009) Cellular functions of protein kinase CK2: a dynamic affair. Cell Mol Life Sci 66:1830–1839

    Article  PubMed  CAS  Google Scholar 

  • Filhol O, Cochet C, Chambaz EM (1990) Cytoplasmic and nuclear distribution of casein kinase II: characterization of the enzyme uptake by bovine adrenocortical nuclear preparation. Biochemistry 29:9928–9936

    Article  PubMed  CAS  Google Scholar 

  • Filhol O, Cochet C, Delagoutte T, Chambaz EM (1991a) Polyamine binding activity of casein kinase II. Biochem Biophys Res Commun 180:945–952

    Article  PubMed  CAS  Google Scholar 

  • Filhol O, Loue-Mackenbach P, Cochet C, Chambaz EM (1991b) Casein kinase II and polyamines may interact in the response of adrenocortical cells to their trophic hormone. Biochem Biophys Res Commun 180:623–630

    Article  PubMed  CAS  Google Scholar 

  • Filhol O, Baudier J, Delphin C, Loue-Mackenbach P, Chambaz EM, Cochet C (1992) Casein kinase II and the tumor suppressor protein P53 associate in a molecular complex that is negatively regulated upon P53 phosphorylation. J Biol Chem 267:20577–20583

    PubMed  CAS  Google Scholar 

  • Götz C, Wagner P, Issinger OG, Montenarh M (1996) p21WAF1/CIP1 interacts with protein kinase CK2. Oncogene 13:391–398

    PubMed  Google Scholar 

  • Götz C, Kartarius S, Scholtes P, Montenarh M (1998) In vivo studies of the interaction between protein kinase CK2 and p21WAF1/CIP1. Cancer Mol Biol 5:1189–1205

    Google Scholar 

  • Götz C, Scholtes P, Schuster N, Prowald A, Nastainczyk W, Montenarh M (1999) Protein kinase CK2 binds to a multi-protein binding domain of the growth suppressor protein p53. Mol Cell Biochem 191:111–120

    Article  PubMed  Google Scholar 

  • Götz C, Kartarius S, Scholtes P, Montenarh M (2000) Binding of p21WAF1/CIP1 on the polypeptide chain of the protein kinase CK2β subunit. Biochem Biophys Res Commun 268:882–885

    Article  PubMed  CAS  Google Scholar 

  • Grankowski N, Boldyreff B, Issinger OG (1991) Isolation and characterization of recombinant human casein kinase II subunits a and b from bacteria. Eur J Biochem 198:25–30

    Article  PubMed  CAS  Google Scholar 

  • Guerra B, Issinger OG (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15:1870–1886

    Article  PubMed  CAS  Google Scholar 

  • Guerra B, Götz C, Wagner P, Montenarh M, Issinger OG (1997) The carboxy terminus of p53 mimicks the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene 14:2683–2688

    Article  PubMed  CAS  Google Scholar 

  • Hanakahi LA, West SC (2002) Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO J 21:2038–2044

    Article  PubMed  CAS  Google Scholar 

  • Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC (2000) Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102:721–729

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1994) The p21 Cdk-interacting protein cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  Google Scholar 

  • Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S (1995) Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 4:387–400

    Google Scholar 

  • Hathaway GM, Traugh JA (1984a) Kinetics of activation of casein kinase II by polyamines and reversal of 2, 3-bisphosphoglycerate inhibition. J Biol Chem 259:7011–7015

    PubMed  CAS  Google Scholar 

  • Hathaway GM, Traugh JA (1984b) Regulation of casein kinase II by 2, 3-bisphosphoglycerate in erythroid cells. J Biol Chem 259:2850–2855

    PubMed  CAS  Google Scholar 

  • Herrmann CPE, Kraiss S, Montenarh M (1991) Association of casein kinase II with immunopurified p53. Oncogene 6:877–884

    PubMed  CAS  Google Scholar 

  • Homma MK, Li DX, Krebs EG, Yuasa Y, Homma Y (2002) Association and regulation of casein kinase 2 activity by adenomatous polyposis coli protein. Proc Natl Acad Sci USA 99:5959–5964

    Article  PubMed  CAS  Google Scholar 

  • Keller DM, Lu H (2002) p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem 277:50206–50213

    Article  PubMed  CAS  Google Scholar 

  • Keller DM, Zeng XY, Wang Y, Zhang QH, Kapoor M, Shu HJ, Goodman R, Lozano G, Zhao YM, Lu H (2001) A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7:283–292

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Jin Y, Vukoti KM, Park JK, Kim EE, Lee KJ, Yu YG (2003) Purification and characterization of human nucleolar phosphoprotein 140 expressed in Escherichia coli. Protein Expr Purif 31:260–264

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Nilbert MC, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hamilton SR, Hedge P, Markham A (1991) Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 251:1366–1370

    Article  PubMed  CAS  Google Scholar 

  • Koza RA, Megosh LC, Palmieri M, O'Brien TG (1991) Constitutively elevated levels of ornithine and polyamines in mouse epidermal papillomas. Carcinogenesis 12:1619–1625

    Article  PubMed  CAS  Google Scholar 

  • Kraiss S, Barnekow A, Montenarh M (1990) Protein kinase activity associated with immunopurified p53 protein. Oncogene 5:845–855

    PubMed  CAS  Google Scholar 

  • Kumar R, Tao M (1975) Multiple forms of casein kinase from rabbit erythrocytes. Biochim Biophys Acta 410:87–98

    PubMed  CAS  Google Scholar 

  • Lawson K, Larentowicz L, Artim S, Hayes CS, Gilmour SK (2006) A novel protein kinase CK2 substrate indicates CK2 is not directly stimulated by polyamines in vivo. Biochemistry 45:1499–1510

    Article  PubMed  CAS  Google Scholar 

  • Lee WK, Lee SY, Kim WI, Rho YH, Bae YS, Lee C, Kim IY, Yu YG (2008) Characterization of the InsP6-dependent interaction between CK2 and Nopp140. Biochem Biophys Res Commun 376:439–444

    Article  PubMed  CAS  Google Scholar 

  • Li DX, Meier UT, Dobrowolska G, Krebs EG (1997) Specific interaction between casein kinase 2 and the nucleolar protein Nopp 140. J Biol Chem 272:3773–3779

    Article  PubMed  CAS  Google Scholar 

  • Li R, Waga S, Hannon GJ, Beach D, Stillman B (1994) Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371:534–537

    Article  PubMed  CAS  Google Scholar 

  • Llorens F, Roher N, Miró FA, Sarno S, Ruiz FX, Meggio F, Plana M, Pinna LA, Itarte E (2003) Eukaryotic translation-initiation factor elFb binds to protein kinase CK2: effects on CK2a activity. Biochem J 375:623–631

    Article  PubMed  CAS  Google Scholar 

  • Mannowetz N, Kartarius S, Wennemuth G, Montenarh M (2010) Protein kinase CK2 and new binding partners during spermatogenesis. Cell Mol Life Sci (in press), doi: 10.1007/s00018-010-0412-9

  • Martel V, Filhol O, Nueda A, Gerber D, Benitez MJ, Cochet C (2001) Visualization and molecular analysis of nuclear import of protein kinase CK2 subunits in living cells. Mol Cell Biochem 227:81–90

    Article  PubMed  CAS  Google Scholar 

  • Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368

    Article  PubMed  CAS  Google Scholar 

  • Meggio F, Boldyreff BS, Marin O, Marchiori F, Perich JW, Issinger OG, Pinna LA (1992) The effect of polylysine on CK-2 activity is influenced by both the structure of the protein/peptide substrates and subunit composition of the enzyme. Eur J Biochem 205:939–945

    Article  PubMed  CAS  Google Scholar 

  • Meggio F, Boldyreff B, Issinger OG, Pinna LA (1994) Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55–64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate. Biochemistry 33:4336–4342

    Article  PubMed  CAS  Google Scholar 

  • Meggio F, Boldyreff B, Marin O, Issinger OG, Pinna LA (1995) Phosphorylation and activation of protein kinase CK2 by p34cdc2 are independent events. Eur J Biochem 230:1025–1031

    Article  PubMed  CAS  Google Scholar 

  • Meggio F, Negro A, Sarno S, Ruzzene M, Bertoli A, Sorgato MC, Pinna LA (2000) Bovine prion protein as a modulator of protein kinase CK2. Biochem J 352:191–196

    Article  PubMed  CAS  Google Scholar 

  • Meier UT, Blobel G (1992) Nopp 140 shuttles on tracks between nucleolus and cytoplasm. Cell 70:127–138

    Article  PubMed  CAS  Google Scholar 

  • Messenger MM, Saulnier RB, Gilchrist AD, Diamond P, Gorbsky GJ, Litchfield DW (2002) Interactions between protein kinase CK2 and Pin1—evidence for phosphorylation-dependent interactions. J Biol Chem 277:23054–23064

    Article  PubMed  CAS  Google Scholar 

  • Miyata Y (2009) CK2: the kinase controlling the Hsp90 chaperone machinery. Cell Mol Life Sci 66:1840–1849

    Article  PubMed  CAS  Google Scholar 

  • Miyata Y, Yahara I (2002) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J Biol Chem 267:7042–7047

    Google Scholar 

  • Münstermann U, Fritz G, Seitz G, Yiping L, Schneider HR, Issinger OG (1990) Casein kinase II is elevated in human tumours and rapidly proliferating non-neoplastic tissue. Eur J Biochem 189:251–257

    Article  PubMed  Google Scholar 

  • Niefind K, Guerra B, Pinna LA, Issinger OG, Schomburg D (1998) Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 Å resolution. EMBO J 17:2451–2462

    Article  PubMed  CAS  Google Scholar 

  • Niefind K, Guerra B, Emakowa J, Issinger OG (2001) Crystal structure of human protein kinase CK2 insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki K, Nishikawa Y, Saito H, Munakata H, Kato T (1996) DNA-binding sperm proteins with oligo-arginine clusters function as potent activators for egg CK-II. FEBS Lett 378:115–120

    Article  PubMed  CAS  Google Scholar 

  • Oliva R, Goren R, Dixon GH (1989) Quail (Coturnix japonica) protamine, full-length cDNA sequence, and the function and evolution of vertebrate protamines. J Biol Chem 264:17627–17630

    PubMed  CAS  Google Scholar 

  • Olsen BB, Guerra B (2008) Ability of CK2beta to selectively regulate cellular protein kinases. Mol Cell Biochem 316:115–126

    Article  PubMed  CAS  Google Scholar 

  • Pagano MA, Cesaro L, Meggio F, Pinna LA (2006) Protein kinase CK2: a newcomer in the “druggable kinome”. Biochem Soc Trans 34:1303–1306

    Article  PubMed  CAS  Google Scholar 

  • Pagano MA, Arrigoni G, Marin O, Sarno S, Meggio F, Treharne KJ, Mehta A, Pinna LA (2008) Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Biochemistry 47:7925–7936

    Article  PubMed  CAS  Google Scholar 

  • Pagano MA, Marin O, Cozza G, Sarno S, Meggio F, Treharne KJ, Mehta A, Pinna LA (2010) Cystic fibrosis transmembrane regulator fragments with the Phe508 deletion exert a dual allosteric control over the master kinase CK2. Biochem J 426:19–29

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE, McCann PP (1982) Polyamine metabolism and function. Am J Physiol 243:C212–C221

    PubMed  CAS  Google Scholar 

  • Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115:3873–3878

    Article  PubMed  CAS  Google Scholar 

  • Praskova M, Kalenderova S, Miteva L, Poumay Y, Mitev V (2002) The ornithine decarboxylase inhibitor, difluoromethylornithine, inhibits casein kinase II activity, c-Myc expression and normal human keratinocyte proliferation. Arch Dermatol Res 293:590–593

    PubMed  CAS  Google Scholar 

  • Prowald A, Schuster N, Montenarh M (1997) Regulation of the DNA binding of p53 by its interaction with protein kinase CK2. FEBS Lett 408:99–104

    Article  PubMed  CAS  Google Scholar 

  • Roher N, Sarno S, Miró F, Ruzzene M, Llorens F, Meggio F, Itarte E, Pinna LA, Plana M (2001) The carboxy-terminal domain of Grp94 binds to protein kinase CK2a but not to CK2 holoenzyme. FEBS Lett 505:42–46

    Article  PubMed  CAS  Google Scholar 

  • Romero-Oliva F, Allende JE (2001) Protein p21WAF1/CIP1 is phosphorylated by protein kinase CK2 in vitro and interacts with the amino terminal end of the CK2 beta subunit. J Cell Biochem 81:445–452

    Article  PubMed  CAS  Google Scholar 

  • Romero-Oliva F, Jacob G, Allende JE (2003) Dual effect of lysine-rich polypeptides on the activity of protein kinase CK2. J Cell Biochem 89:348–355

    Article  PubMed  CAS  Google Scholar 

  • Sarno S, Pinna LA (2008) Protein kinase CK2 as a druggable target. Mol Biosyst 4:889–894

    Article  PubMed  CAS  Google Scholar 

  • Sarno S, Marin O, Meggio F, Pinna LA (1993) Polyamines as negative regulators of casein kinase-2: the phosphorylation of calmodulin triggered by polylysine and by the alpha[66-86] peptide is prevented by spermine. Biochem Biophys Res Commun 194:83–90

    Article  PubMed  CAS  Google Scholar 

  • Schuster N, Prowald A, Schneider E, Scheidtmann K-H, Montenarh M (1999) Regulation of p53 mediated transactivation by the b-subunit of protein kinase CK2. FEBS Lett 447:160–166

    Article  PubMed  CAS  Google Scholar 

  • Schuster N, Götz C, Faust M, Schneider E, Prowald A, Jungbluth A, Montenarh M (2001) Wild-type p53 inhibits protein kinase CK2 activity. J Cell Biochem 81:172–181

    Article  PubMed  CAS  Google Scholar 

  • Shaulian E, Zauberman A, Ginsberg D, Oren M (1992) Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol Cell Biol 12:5581–5592

    PubMed  CAS  Google Scholar 

  • Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114

    Article  PubMed  CAS  Google Scholar 

  • Shore LJ, Soler AP, Gilmour SK (1997) Ornithine decarboxylase expression leads to translocation and activation of protein kinase CK2 in vivo. J Biol Chem 272:12536–12543

    Article  PubMed  CAS  Google Scholar 

  • Solyakov L, Cain K, Tracey BM, Jukes R, Riley AM, Potter BVL, Tobin AB (2004) Regulation of casein kinase-2 (CK2) activity by inositol phosphates. J Biol Chem 279:43403–43410

    Article  PubMed  CAS  Google Scholar 

  • Soussi T, Caron de Fromentel C, May P (1990) Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5:945–952

    PubMed  CAS  Google Scholar 

  • Stigare J, Buddelmeijer N, Pigon A, Egyhazi E (1993) A majority of CK2 alpha subunit is tightly bound to intranuclear compounds but not to the beta subunit. Mol Cell Biol 129:77–85

    CAS  Google Scholar 

  • Szwergold BS, Graham RA, Brown TR (1987) Observation of inositol pentakis- and hexakis-phosphates in mammalian tissues by 31P NMR. Biochem Biophys Res Commun 149:874–881

    Article  PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  PubMed  CAS  Google Scholar 

  • Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K (2001) Protein kinase CK2 signaling in neoplasia. Histol Histopathol 16:573–582

    PubMed  CAS  Google Scholar 

  • Unger T, Mietz JA, Scheffner M, Yee CL, Howley PM (1993) Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression. Mol Cell Biol 13:5186–5194

    PubMed  CAS  Google Scholar 

  • Unger GM, Davis AT, Slaton JW, Ahmed K (2004) Protein kinase CK2 as regulator of cell survival: implications for cancer therapy. Curr Cancer Drug Targets 4:77–84

    Article  PubMed  Google Scholar 

  • Valero E, De Bonis S, Filhol O, Wade RH, Langowski J, Chambaz EM, Cochet C (1995) Quaternary structure of casein kinase 2. Characterization of multiple oligomeric states and relation with catalytic activity. J Biol Chem 270:8345–8352

    Article  PubMed  CAS  Google Scholar 

  • Vilk G, Weber JE, Turowec JP, Duncan JS, Wu C, Derksen DR, Zien P, Sarno S, Donella-Deana A, Lajoie G, Pinna LA, Li SS, Litchfield DW (2008) Protein kinase CK2 catalyzes tyrosine phosphorylation in mammalian cells. Cell Signal 20:1942–1951

    Article  PubMed  CAS  Google Scholar 

  • Wagner P, Appel K, Issinger OG, Montenarh M (1994) On the interaction of p53 with casein kinase II. Int J Oncol 4:491–498

    CAS  Google Scholar 

  • Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Reed M, Wang P, Stenger JE, Mayr G, Anderson ME, Schwedes JF, Tegtmeyer P (1993) p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Dev 7:2575–2586

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Isaac C, Wang C, Dragon F, Pogacic V, Meier UT (2000) Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp 140. Mol Biol Cell 11:567–577

    PubMed  Google Scholar 

  • York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I would like to thank Nathaniel Saidu for his help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Montenarh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montenarh, M. Cellular regulators of protein kinase CK2. Cell Tissue Res 342, 139–146 (2010). https://doi.org/10.1007/s00441-010-1068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1068-3

Keywords

Navigation