Skip to main content
Log in

Evaluation of hearing in patients with familial Mediterranean fever

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Familial Mediterranean fever (FMF) is a common and well-understood hereditary periodic fever syndrome. Hereditary periodic fever syndromes include a group of multisystem diseases characterized by recurrent fever attacks with inflammation affecting skin, joints, and some other tissues. These are FMF, tumor necrosis factor receptor, tumor necrosis factor receptor associated periodic syndrome, hyperimmunglobulinemia D syndrome, Muckle–Wells syndrome, and familial cold urticaria. In literature, it is determined that some of these diseases cause hearing loss. In light of the foregoing, we thought that FMF patients may have the same type of subclinical hearing loss and, therefore, the hearing ability of these patients was evaluated with otoacoustic emission and high frequency audiometry tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Öztürk A, Elbosky E, Elsayed SM, Alhodhod M, Akar N (2009) Mutational analysis of the MEFV gene in Egyptian patients with familial Mediterranean fever. Turk J Med Sci 39:229–234

    Google Scholar 

  2. Ben-Chetrit E, ve Levy M (1998) Familial Mediterranean fever. Lancet 351:659–664

    Article  PubMed  CAS  Google Scholar 

  3. Drenth JPH, ve Van Der Meer JWH (2001) Hereditary periodic fever. N Engl J Med 345:1748–1756

    Article  PubMed  CAS  Google Scholar 

  4. Kasapçopur Ö, ve Arısoy N (2006) Ailesel Akdeniz ateşi ve diğer otoenflamatuar hastalıklar. Türk Pediatri Arşivi 41:9–17

    Google Scholar 

  5. Glattke TJ, ve Robinette MS (2002) Otoacoustic emissions—clinical applications, 2nd ed. Chapter: Transient evoked otoacoustic emissions. Thieme, New York, p 95–115

  6. Glattke TJ, ve Robinette MS (2002) Otoacoustic emissions—clinical applications, 2nd ed. Chapter: Distortion product otoacoustic emissions in relation to hearing loss, Thieme, New York, p 243–272

  7. Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391

    Article  PubMed  CAS  Google Scholar 

  8. Dicroff HG (1982) Behavior of high frequency hearing in noise. Audiology 21:83–92

    Article  Google Scholar 

  9. Güngör N, Böke B, Belgin E, Tunçbilek E (2000) High frequency hearing loss in ullrich turner syndrome. Eur J Pediatr 159:740–744

    Article  PubMed  Google Scholar 

  10. Jacobson EJ (1969) Clinical finding in high frequency treshold in ototoxic drug usage. J Aud Res 9:379–389

    Google Scholar 

  11. Stuchly MA (1998) Biomedical concerns in wireless communications. Crit Rev Biomed Eng 26:117–151

    Article  PubMed  CAS  Google Scholar 

  12. Lidar M (2007) Livneh A familial Mediterranean fever: clinical, molecular and management advancements. Neth J Med 65:318–324

    PubMed  CAS  Google Scholar 

  13. Heller HS, ve Sherf L (1958) Familial Mediterranean fever (FMF). Arch Intern Med 102:50–71

    Article  CAS  Google Scholar 

  14. Touitou I, Sarkisian T, Medlej-Hashim M, Tunca M, Livneh A, Cattan D (2007) Country as the primary risk factor for renal amyloidosis in familial Mediterranean fever. Arthritis Rheum 56:1706–1712

    Article  PubMed  Google Scholar 

  15. Mamou H, Cattan R (1952) La maladie periodique (sur 14 cas personnels dont 8 compliques de nephropathies). Sem Hop Paris 28:1062–1070

    PubMed  CAS  Google Scholar 

  16. Turkish FMF study group (2005) Familial Mediterranean fever in Turkey: results of a nationwide study. Medicine 84:1–11

    Article  Google Scholar 

  17. Aganna E, Martinon F, Hawkins PN, Ross JB, Swan DC et al (2002) Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum 46:2445–2452

    Article  PubMed  CAS  Google Scholar 

  18. Prieur AM, Griscelli C, Lampert F, Truckenbrodt H, Guggenheim MA et al (1987) A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome: a specific entity analysed in 30 patients. Scand J Rheumatol Suppl 66:57–68

    Article  PubMed  CAS  Google Scholar 

  19. Gorlin R, Toriel lo H, Cohen M (1995) Hereditary hearing loss and its syndromes. Oxford University Press, New York

    Google Scholar 

  20. Hawkins PN, Bybee A, Aganna E, McDermott MF (2004) Response to anakinra in a de novo case of neonatal-onset multisystem inflammatory disease (NOMID). Arthritis Rheum 50:2708–2709

    Article  PubMed  Google Scholar 

  21. Ahmadi N, Brewer CC, Zalewski C, King KA, Butman JA, Plass N et al (2011) Cryopyrin-associated periodic syndromes: otolaryngologic and audiologic manifestations. Otolaryngol Head Neck Surg 145:295–302

    Article  PubMed  Google Scholar 

  22. Mirault T, Launay D, Cuisset L, Hachulla E, Lambert M et al (2006) Recovery from deafness in a patient with Muckle-Wells syndrome treated with anakinra. Arthritis Rheum 54:1697–1700

    Article  PubMed  Google Scholar 

  23. Hannum CH, Wilcox CJ, Arend WP, Joslin FG, Dripps DJ et al (1990) Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature 343:336–340

    Article  PubMed  CAS  Google Scholar 

  24. Chae JJ, Aksentijevich I, Kastner DL (2009) Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy. Br J Haematol 146:467–478

    Article  PubMed  CAS  Google Scholar 

  25. Ichimiya I, Adams JC, Kimura RS (1994) Changes in immunostaining of cochleas with experimentally induced endolymphatic hydrops. Ann Otol Rhinol Laryngol. 103:457–468

    PubMed  CAS  Google Scholar 

  26. Adams JC (2008) Clinical implications of inflammatory cytokins in the cochlea: a technical note. Otol Neurotol. 29:1043–1049

    Article  Google Scholar 

  27. Yoshida K, Ichimiya I, Suzuki M, Mogi G (1999) Effect of proinflammatory cytokines on cultured spiral ligament fibrocytes. Hear Res 137:155–159

    Article  PubMed  CAS  Google Scholar 

  28. Satoh H, Firestein GS, Billings PB, Harris JP, Keithley EM (2003) Proinflammatory cytokine expression in the endolymphatic sac during iner ear inflammation. J Assoc Res Otolaryngol 4:139–147

    Article  PubMed  Google Scholar 

  29. Hashimoto S, Billings P, Harris JP, Firestein GS, Keithley EM (2005) Innate immunity contributes to cochlear adaptive immune responses. Audiol Neurootol 10:35–43

    Article  PubMed  Google Scholar 

  30. Satoh H, Firestein GS, Billings PB, Harris JP, Keithley EM (2002) Tumor necrosis factor-alpha, an initiator, and etanercept, an inhibitor of cochlear inflammation. Laryngoscope 112:1627–1634

    Article  PubMed  CAS  Google Scholar 

  31. Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 489:180–194

    Article  PubMed  Google Scholar 

  32. Ichimiya I, Kurono Y, Hirano T, Mogi G (1998) Changes in immunostaining of inner ears after antigen challenge into the scala tympani. Laryngoscope 108:585–591

    Article  PubMed  CAS  Google Scholar 

  33. Ichimiya I, Suzuki M, Hirano T, Mogi G (1999) The influence of pneumococcal otitis media on the cochlear lateral wall. Hear Res 131:128–134

    Article  PubMed  CAS  Google Scholar 

  34. Wang X, Truong T, Billings PB, Harris JP, Keithley EM (2003) Block-age of immune-mediated inner ear damage by etanercept. Otol Neurotol 24:52–57

    Article  PubMed  Google Scholar 

  35. Uysal İÖ, Gürbüzler L, Kaya A, Koç S, Gültürk S et al (2012) Evaluation of cochlear function using transient evoked otoacoustic emission in children with familial Mediterranean fever. Int J Pediatr Otorhinolaryngol 76:379–381

    Article  PubMed  Google Scholar 

  36. Mansfield E, Chae JJ, Komarow HD, Brotz TM, Frucht DM et al (2001) The familial Mediterranean fever protein, pyrin, associates with microtubules and colocalizes with actin filaments. Blood 98:851–859

    Article  PubMed  CAS  Google Scholar 

  37. Sukgi C, Pafitis I, Herer G (1999) Clinical applications of transiently evoked otoacoustic emissions in the pediatric population. Ann Otol Rhinol Laringol 108:132–137

    Google Scholar 

Download references

Conflict of interest

We have no conflict of interest that we should disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Önder Uysal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polat, K., Uysal, İ.Ö., Şenel, S. et al. Evaluation of hearing in patients with familial Mediterranean fever. Eur Arch Otorhinolaryngol 270, 2871–2874 (2013). https://doi.org/10.1007/s00405-013-2347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-013-2347-x

Keywords

Navigation