Skip to main content

Advertisement

Log in

Combination of MTX and LEF attenuates inflammatory bone erosion by down-regulation of receptor activator of NF-kB ligand and interleukin-17 in type II collagen-induced arthritis rats

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The objectives of this study were to determine the effect of combination of methotrexate (MTX) and leflunomide (LEF) on type II collagen–induced arthritis rats and its mechanism. Curative effect was confirmed on CIA rats, which were randomized and divided into model, MTX, LEF and MTX + LEF group. Weights and joint swelling scores of rats were recorded. Interleukin (IL)-17, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) concentration in serum were determined by ELISA. H&E dyeing of joint was used to estimate the inflammation and osteoclasia extent. The mechanism was investigated through fibroblast-like synoviocytes isolated from RA patients. The effect of MTX and LEF on cell viability, and RANKL and OPG expression were indicated through MTT and RT-PCR analysis, respectively. Combination therapy would be effective in treating CIA rats. Joint swelling scores and IL-17 and RANKL level in serum were decreased obviously (P < 0.05), while OPG level was elevated (P < 0.05). Anti-inflammatory and anti-osteoclasia effect would be indicated by H&E dyeing results. Moreover, FLS cell viability was inhibited by combination treatment in vitro (P < 0.05), and expression of osteoclasia-related genes (RANKL and OPG) was modified (P < 0.05). Combination therapy would relive the synovium hypertrophy through depressing cell viability and osteoclasia through decreasing RANKL and increasing OPG expression. Otherwise, combination was superior to monotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smolen JS, Steiner G (2003) Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov 2:473–488

    Article  PubMed  CAS  Google Scholar 

  2. Gaffo A, Saag KG, Curtis JR (2006) Treatment of rheumatoid arthritis. Am J Health Syst Pharm 63:2451–2465

    Article  PubMed  CAS  Google Scholar 

  3. Rachapalli SM, Williams R, Walsh DA et al (2010) First-line DMARD choice in early rheumatoid arthritis—do prognostic factors play a role? Rheumatology (Oxford) 49:1267–1271

    Article  Google Scholar 

  4. Caramaschi P, Bambara LM, Pieropan S et al (2009) Anti-TNFalpha blockers, autoantibodies and autoimmune diseases. Joint Bone Spine 76:333–342

    Article  PubMed  CAS  Google Scholar 

  5. Christensen R, Kristensen LE, Geborek P et al (2009) The efficacy of the three available anti-tumour necrosis factor therapies in patients with rheumatoid arthritis: a meta-analytic literature review–secondary publication. Ugeskr Laeger 171:2192–2194

    PubMed  Google Scholar 

  6. Feher J, Lengyel G (2009) Effectiveness and safety of biological therapy with adalimumab. Orv Hetil 150:1215–1222

    Article  PubMed  Google Scholar 

  7. Nasonov EL (2009) Rituximab treatment of rheumatoid arthritis: new evidence. Ter Arkh 81:82–91

    PubMed  CAS  Google Scholar 

  8. Quartuccio L, Lombardi S, Fabris M et al (2009) Long-term effects of rituximab in rheumatoid arthritis: clinical, biologic, and pharmacogenetic aspects. Ann NY Acad Sci 1173:692–700

    Article  PubMed  CAS  Google Scholar 

  9. Wiens A, Correr CJ, Pontarolo R et al (2009) A systematic review and meta-analysis of the efficacy and safety of etanercept for treating rheumatoid arthritis. Scand J Immunol 70:337–344

    Article  PubMed  CAS  Google Scholar 

  10. Falgarone G, Semerano L, Rulle S, Boissier MC (2009) Targeting lymphocyte activation to treat rheumatoid arthritis. Joint Bone Spine 76:327–332

    Article  PubMed  CAS  Google Scholar 

  11. Bracewell C, Isaacs JD, Emery P, Ng WF (2009) Atacicept, a novel B cell-targeting biological therapy for the treatment of rheumatoid arthritis. Expert Opin Biol Ther 9:909–919

    Article  PubMed  CAS  Google Scholar 

  12. Muhammad K, Roll P, Seibold T et al (2011) Impact of IL-6 receptor inhibition on human memory B cells in vivo: impaired somatic hypermutation in preswitch memory B cells and modulation of mutational targeting in memory B cells. Ann Rheum Dis 70:1507–1510

    Article  PubMed  CAS  Google Scholar 

  13. Martinez JA, Loza E, Carmona L (2009) Systematic review on the safety of methotrexate in rheumatoid arthritis regarding the reproductive system (fertility, pregnancy, and breastfeeding). Clin Exp Rheumatol 27:678–684

    Google Scholar 

  14. Smolen JS, Aletaha D, Machold KP (2005) Therapeutic strategies in early rheumatoid arthritis. Best Pract Res Clin Rheumatol 19:163–177

    Article  PubMed  CAS  Google Scholar 

  15. Kalb RE, Strober B, Weinstein G et al (2009) Methotrexate and psoriasis: 2009 National Psoriasis Foundation Consensus Conference. J Am Acad Dermatol 60:824–837

    Article  PubMed  Google Scholar 

  16. Schroder O, Stein J (2003) Low dose methotrexate in inflammatory bowel disease: current status and future directions. Am J Gastroenterol 98:530–537

    Article  PubMed  Google Scholar 

  17. Ochaion A, Bar-Yehuda S, Cohn S et al (2006) Methotrexate enhances the anti-inflammatory effect of CF101 via up- regulation of the A3 adenosine receptor expression. Arthritis Res Ther 8:R169

    Article  PubMed  Google Scholar 

  18. Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39

    Article  PubMed  CAS  Google Scholar 

  19. Fox RI, Herrmann ML, Frangou CG et al (1999) Mechanism of action of leflunomide in rheumatoid arthritis. Clin Immunol 93:198–208

    Article  PubMed  CAS  Google Scholar 

  20. Katchamart W, Trudeau J, Phumethum V et al (2009) Efficacy and toxicity of methotrexate (MTX) monotherapy versus MTX combination therapy with non-biological disease-modifying antirheumatic drugs in rheumatoid arthritis: a systematic review and meta-analysis. Ann Rheum Dis 68:1105–1112

    Article  PubMed  CAS  Google Scholar 

  21. Kremer JM (1999) Methotrexate and leflunomide: biochemical basis for combination therapy in the treatment of rheumatoid arthritis. Semin Arthritis Rheum 29:24–26

    Article  Google Scholar 

  22. Wessels JAM, Huizinga TWJ, Guchelaar H-J (2008) Recent insights in the pharmacological actions of methotrexate in the treatment of rheumatoid arthritis. Rheumatology 47:249–255

    Article  PubMed  CAS  Google Scholar 

  23. Cook AD, Braine EL, Campbell IK et al (2001) Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease. Arthritis Res 3:293–298

    Article  PubMed  CAS  Google Scholar 

  24. Pagat GE, Barnes JM (1964) Interspecies Dosage Conversion Scheme in Evaluation of Results and Quantitative Application in Different Species. In: Laurence DR, Bacarach AL (eds) Evaluation of drug activities: pharmacometrics. Academic press, London

    Google Scholar 

  25. Urakawa K, Mihara M, Suzuki T et al (2000) Polyglutamation of antifolates is not required for induction of extracellular release of adenosine or expression of their anti-inflammatory effects. Immunopharmacology 48:137–144

    Article  PubMed  CAS  Google Scholar 

  26. Lee YA, Kim JY, Hong SJ et al (2007) Synovial proliferation differentially affects hypoxia in the joint cavities of rheumatoid arthritis and osteoarthritis patients. Clin Rheumatol 26:2023–2029

    Article  PubMed  Google Scholar 

  27. Mor A, Abramson SB, Pillinger MH (2005) The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clin Immunol 115:118–128

    Article  PubMed  CAS  Google Scholar 

  28. David AF Alison G, Rachel M et al Lundy (2010) Cell-cell Interactions in Rheumatoid Arthritis Synovium Rheum Dis Clin N Am 36: 311–323

  29. Weiwei F, Weimin L, Wei L et al (2009) IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. Exp Mol Pathol 87:212–218

    Article  Google Scholar 

  30. Cho ML, Jung YO, Kim KW et al (2008) IL-17 induces the production of IL-16 in rheumatoid arthritis. Exp Mol Med 40:237–245

    Article  PubMed  CAS  Google Scholar 

  31. Katz Y, Nadiv O, Beer Y (2001) Interleukin-17 enhances tumor necrosis factor α-induced synthesis of interleukins 1, 6, and 8 in skin and synovial fibroblasts. Arthritis Rheum 44:2176–2184

    Article  PubMed  CAS  Google Scholar 

  32. Irena L, Daphna P, David L et al (2006) The effects of leflunomide on clinical parameters and serum levels of IL-6, IL-10, MMP-1 and MMP-3 in patients with resistant rheumatoid arthritis. Cytokine 33:106–110

    Article  Google Scholar 

  33. Kraan MC, Smeets TJ, van Loon MJ et al (2004) Differential effects of leflunomide and methotrexate on cytokine production in rheumatoid arthritis. Ann Rheum Dis 63:1056–1061

    Article  PubMed  CAS  Google Scholar 

  34. Masataka A, Hiroshi T (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264

    Article  Google Scholar 

  35. Sonja H, Gerhard K, Georg S (2008) Molecular mechanisms of inflammatory bone damage: emerging targets for therapy. Trends Mol Med 14:245–253

    Article  Google Scholar 

  36. Wada T, Nakashima T, Hiroshi N et al (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12:17–25

    Article  PubMed  CAS  Google Scholar 

  37. Nicola G, Simona C, Vittorio R (2004) New insight in the mechanism of osteoclast activation and formation in multiple myeloma: focus on the receptor activator of NF-κB ligand (RANKL). Exp Hematol 32:685–691

    Article  Google Scholar 

  38. Toru Y, Yuki N, Naomi I et al (2009) IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-a antibody: a novel mechanism of osteoclastogenesis by IL-17. J Cell Biochem 108:947–955

    Article  Google Scholar 

  39. Zhang F, Tanaka H, Kawato T et al (2011) Interleukin-17A induces cathepsin K and MMP-9 expression in osteoclasts via celecoxib-blocked prostaglandin E2 in osteoblasts. Biochimie 93:296–305

    Article  PubMed  CAS  Google Scholar 

  40. Ju JH, ChoML JhunJY et al (2008) Oral administration of type-II collagen suppresses IL-17 associated RANKL expression of CD4+T cells in collagen-induced arthritis. Immunol Lett 117:16–25

    Article  PubMed  CAS  Google Scholar 

  41. Schett G, Middleton S, Bolon B (2005) Additive bone protective effects of anabolic treatment when used in conjunction with RANKL and tumor necrosis factor inhibition in two rat arthritis models. Arthritis Rheum 52:1604–1611

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Nanjing Municipal Health Bureau in China (project number: ZKX08022, YKK11101) for providing funds to carry out the program.

Conflict of interest

All the authors declared that there was no conflict of interest in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Fang.

Additional information

Both Yao Yao and Cong-zhu Ding are the first authors because of their equal effort for the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Ding, Cz. & Fang, Y. Combination of MTX and LEF attenuates inflammatory bone erosion by down-regulation of receptor activator of NF-kB ligand and interleukin-17 in type II collagen-induced arthritis rats. Rheumatol Int 33, 1845–1853 (2013). https://doi.org/10.1007/s00296-013-2674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-013-2674-7

Keywords

Navigation