Skip to main content

Advertisement

Log in

Serum concentrations of formation (PINP) and resorption (Ctx) bone turnover markers in rheumatoid arthritis

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Joint inflammation in rheumatoid arthritis (RA) induces local periarticular osteoporosis. Generalised bone mineral density (BMD) decrease concerns approximately 50% of rheumatic patients. Both types of bone mass depletion can issue from cytokine-induced (TNF-α, IL-1, IL-6) osteoclasts’ activation, osteoprotegerin and its ligand’s (RANKL) function disorders, patients’ immobilisation and glucocorticosteroid (GCS) intake, as well as from hormonal alterations in postmenopausal women, predominate among RA individuals. The aim of the study was to compare serum concentrations of marker of bone formation—serum aminoterminal propeptide of type I collagen (PINP), and bone resorption, carboxy (C) terminal telopeptide (Ctx), bone turnover markers in RA and osteoarthritis (OA) patients and in RA groups of different disease activity, different degree of joint damage and the history of GCS intake. A total of 50 RA female patients and 50 women with knee OA were included in the study. Blood for morphology and biochemistry laboratory tests was taken. Joint X-rays to establish OA and RA diagnosis and the degree of RA progression, as well as DEXA BMD measurements were performed. PINP and Ctx concentrations were assessed. In RA patients the number of swollen and painful joints, the duration of morning stiffness, visual analogue scale values and Waaler–Rose’s test activity were recorded. The Disease Activity Index (DAS 28) was counted from the appropriate formula. No differences in bone turnover markers’ concentrations were noted neither between RA and OA patients nor between the RA group when compared to the one without the history of GCS use. Bone turnover markers’ concentrations in RA were proportional to the number of swollen and painful joints. However, no correlation was found between the markers’ concentrations and RA activity assessed by DAS 28 or by laboratory means. Ctx concentrations were higher in patients at II degree joint damage according to Larsen and Dale’s than at more advanced stages. Ctx concentrations decreased with the disease duration. Serum morphogenesis and resorption markers’ concentrations change in course of RA indicating the decrease in bone metabolic activity with the disease duration and progression. High RA activity and severity correlate with increased markers’ levels—the resorption one. The influence of GCS on bone metabolism in RA requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Suzuki Y, Tanihara M, Ichikawa Y et al (1995) Periarticular osteopenia in adjuvant-induced arthritis: role of interleukin-1 in decreased osteogenic and increased resorptive potential of bone marrow cells. Ann Rheum Dis 54:484–490. doi:10.1136/ard.54.6.484

    Article  PubMed  CAS  Google Scholar 

  2. Dequeker J, Maenaut J, Verwilghen J et al (1995) Osteoporosis in rheumatoid arthritis. Clin Exp Rheumatol 13(Suppl 12):S21–S26

    PubMed  Google Scholar 

  3. Calvo MS, Eyre DR, Gunberg CM (1996) Molecular basis and clinical application of biological markers of bone turnover. Endocrinol Rev 17:333–368. doi:10.1210/er.17.4.333

    CAS  Google Scholar 

  4. Arnett FC, Edworthy SM, Block DA et al (1988) The American Rheumatism Association, 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324. doi:10.1002/art.1780310302

    Article  PubMed  CAS  Google Scholar 

  5. Altman R (1991) Classification of disease: osteoarthritis. Semin Arthritis Rheum 20(Suppl 2):40–47. doi:10.1016/0049-0172(91)90026-V

    Article  PubMed  CAS  Google Scholar 

  6. Van der Heijde DMFM, van’t Hof MA, van Riel PLCM et al (1993) Development of a disease activity score based on judgement in clinical practice by rheumatologists. J Rheumatol 20:579–581

    Google Scholar 

  7. Larsen A, Dale K, Eek M (1977) Radiographic evaluation of rheumatoid arthritis and related conditions by standard reference films. Acta Radiol Diagn (Stockh) 18:481–491

    CAS  Google Scholar 

  8. Robert R, Sokal F, Rohlf J (1986) Biometry. Freeman, New York, pp 354–359, 691–714

  9. Garnero P, Solrnay-Rendu E, Clausrat B et al (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women. The OFFELY study. J Bone Miner Res 15:1526–1536. doi:10.1359/jbmr.2000.15.8.1526

    Article  PubMed  CAS  Google Scholar 

  10. Garnero P, Delmas PD (2004) Noninvasive techniques for assessing skeletal changes in inflammatory arthritis: bone biomarkers. Curr Opin Rheumatol 16:428–434. doi:10.1097/01.moo.0000127830.72761.00

    Article  PubMed  Google Scholar 

  11. Demers LM, Kleerekoper M (1994) Recent advances in biochemical markers of bone turnover. Clin Chem 40:1994–1995

    PubMed  CAS  Google Scholar 

  12. Dias A, Lopes Vaz A, Hargreaves M et al (1989) Biomarkers in secondary osteoporosis. Clin Rheum Suppl 2:89–94. doi:10.1007/BF02207241

    Article  Google Scholar 

  13. Chapurlat RD, Garnelo P, Breart G et al (2000) Serum type I collagen break down product (serum Ctx) predicts hip fracture risk in elderly women: The EPIDOS Study. Bone 27:283–286. doi:10.1016/S8756-3282(00)00325-2

    Article  PubMed  CAS  Google Scholar 

  14. Catrina AI, af Klint E, Ernestam S et al (2006) Anti-tumor necrosis factor therapy increases synovial osteoprotegerin expression in rheumatoid arthritis. Arthritis Rheum 54:76–81. doi:10.1002/art.21528

    Article  PubMed  CAS  Google Scholar 

  15. Compston IE, Crawley EC, Evans C et al (1988) Spinal trabecular bone mineral content in patients with non-steroid treated rheumatoid arthritis. Ann Rheum Dis 47:660–664. doi:10.1136/ard.47.8.660

    Article  PubMed  CAS  Google Scholar 

  16. Cortet B, Filipo RM, Pigny P et al (1998) Is bone turnover a determinant of bone mass in rheumatoid arthritis? J Rheumatol 25:2339–2344

    PubMed  CAS  Google Scholar 

  17. Garnero P, Jouvenne P, Buchs N et al (1999) Uncoupling of bone metabolism in rheumatoid arthritis patients with or without joint destruction: assessment with serum type I collagen break down products. Bone 24:381–385. doi:10.1016/S8756-3282(98)00193-8

    Article  PubMed  CAS  Google Scholar 

  18. Gough AKS, Liley J, Eyre S et al (1994) Generalised bone loss in patients with early rheumatoid arthritis. Lancet 344:23–27. doi:10.1016/S0140-6736(94)91049-9

    Article  PubMed  CAS  Google Scholar 

  19. Gough A, Sambroock P, Delvin J et al (1998) Osteoclastic activation in the principal mechanism leading to secondary osteoporosis in rheumatoid arthritis. J Rheumatol 25:1282–1298

    PubMed  CAS  Google Scholar 

  20. Momohara S, Okamoto H, Yago T et al (2005) The study of bone mineral density and bone turnover markers in postmenopausal women with active rheumatoid arthritis. Mod Rheumatol 15:410–414. doi:10.1007/s10165-005-0435-5

    Article  PubMed  CAS  Google Scholar 

  21. Nakayama H (2007) Osteoporosis in the patients with rheumatoid arthritis (3): the efficacy and the selection of the osteoporosis therapeutic drug. Clin Calcium 17:1607–1612

    PubMed  Google Scholar 

  22. Sinigaglia L, Varenna M, Girasole G et al (2006) Epidemiology of osteoporosis in rheumatic diseases. Rheum Dis Clin North Am 32:631–658. doi:10.1016/j.rdc.2006.07.002

    Article  PubMed  Google Scholar 

  23. de Nijs RN, Jacobs JW, Bijsma JW et al (2001) Prevalence of vertebral deformities and symptomatic vertebral fractures in corticosteroid treated patients with rheumatoid arthritis. Rheumatology (Oxf) 40:1375–1383. doi:10.1093/rheumatology/40.12.1375

    Article  Google Scholar 

  24. Huusko TM, Korpela M, Karppi P et al (2001) Threefold increased risk of hip fractures with rheumatoid arthritis in central Finland. Ann Rheum Dis 60:521–522. doi:10.1136/ard.60.5.521

    Article  PubMed  CAS  Google Scholar 

  25. Garton MJ, Reid DM (1993) Bone mineral density of the hip and the spine in men with rheumatoid arthritis, effects of low dose corticosteroids. Arthritis Rheum 36:222–225

    PubMed  CAS  Google Scholar 

  26. Korczowska I, Olewicz-Gawlik A, Trefler J et al (2007) Does low-dose and short-term glucocorticoids treatment increase the risk of osteoporosis in rheumatoid arthritis female patients? Clin Rheumatol 27(5):565–572

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Wisłowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisłowska, M., Jakubicz, D., Stępień, K. et al. Serum concentrations of formation (PINP) and resorption (Ctx) bone turnover markers in rheumatoid arthritis. Rheumatol Int 29, 1403–1409 (2009). https://doi.org/10.1007/s00296-009-0867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-009-0867-x

Keywords

Navigation