Skip to main content

Advertisement

Log in

Use of animal models in elucidating disease pathogenesis in IBD

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Inflammatory bowel diseases (IBD) are a collection of diseases characterized by chronic gastrointestinal inflammation resulting from an exuberant immune response to commensal flora in genetically susceptible individuals. Rapid advances in the field of genomics have resulted in the identification of at least 163 loci that contribute susceptibility to both Crohn’s disease (CD) and ulcerative colitis (UC). Similar to other complex diseases, however, the “curse of missing heritability” remains a significant concern in understanding the mechanisms underlying IBD. While genetic discoveries, to date, only account for 7–14 % of disease variance for IBD, studies have increasingly demonstrated a role for environmental factors in disease pathogenesis. Furthermore, the use of animal models of IBD has led to a greater understanding of disease pathogenesis implicating various aspects of the innate immune response including the bacterial, fungal, and viral microbiome and adaptive immune response such as the interleukin (IL)-23/IL-17 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jostins L, Ripke S, Weersma RK et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–24

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–8

    Article  PubMed  CAS  Google Scholar 

  3. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci USA 109:594–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–30

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–4

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104:13780–5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Tong M, Li X, Wegener Parfrey L et al (2013) A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One 8:e80702

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gevers D, Kugathasan S, Denson LA et al (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15:382–92

    Article  PubMed  CAS  Google Scholar 

  11. Ogura Y, Bonen DK, Inohara N et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–6

    Article  PubMed  CAS  Google Scholar 

  12. Hugot JP, Chamaillard M, Zouali H et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603

    Article  PubMed  CAS  Google Scholar 

  13. Hugot JP, Laurent-Puig P, Gower-Rousseau C et al (1996) Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 379:821–3

    Article  PubMed  CAS  Google Scholar 

  14. Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–62

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Rivas MA, Beaudoin M, Gardet A et al (2011) Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 43:1066–73

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Kufer TA, Banks DJ, Philpott DJ (2006) Innate immune sensing of microbes by Nod proteins. Ann N Y Acad Sci 1072:19–27

    Article  PubMed  CAS  Google Scholar 

  18. Travassos LH, Carneiro LA, Ramjeet M et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11:55–62

    Article  PubMed  CAS  Google Scholar 

  19. Cooney R, Baker J, Brain O et al (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16:90–7

    Article  PubMed  CAS  Google Scholar 

  20. Petnicki-Ocwieja T, Hrncir T, Liu YJ et al (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA 106:15813–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Frank DN, Robertson CE, Hamm CM et al (2011) Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 17:179–84

    Article  PubMed  Google Scholar 

  22. Li E, Hamm CM, Gulati AS et al (2012) Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One 7:e26284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Rodemann JF, Dubberke ER, Reske KA, da Seo H, Stone CD (2007) Incidence of Clostridium difficile infection in inflammatory bowel disease. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc 5:339–44

    Article  Google Scholar 

  24. Strober W, Asano N, Fuss I, Kitani A, Watanabe T (2014) Cellular and molecular mechanisms underlying NOD2 risk-associated polymorphisms in Crohn’s disease. Immunol Rev 260:249–60

    Article  PubMed  CAS  Google Scholar 

  25. Rehman A, Sina C, Gavrilova O et al (2011) Nod2 is essential for temporal development of intestinal microbial communities. Gut 60:1354–62

    Article  PubMed  CAS  Google Scholar 

  26. Natividad JM, Petit V, Huang X et al (2012) Commensal and probiotic bacteria influence intestinal barrier function and susceptibility to colitis in Nod1−/−; Nod2−/− mice. Inflamm Bowel Dis 18:1434–46

    Article  PubMed  Google Scholar 

  27. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB (1995) Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem 270:4640–9

    Article  PubMed  CAS  Google Scholar 

  28. Ferrer-Admetlla A, Sikora M, Laayouni H et al (2009) A natural history of FUT2 polymorphism in humans. Mol Biol Evol 26:1993–2003

    Article  PubMed  CAS  Google Scholar 

  29. McGovern DP, Jones MR, Taylor KD et al (2010) Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum Mol Genet 19:3468–3476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Rausch P, Rehman A, Kunzel S et al (2011) Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci USA 108:19030–5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Tong M, McHardy I, Ruegger P et al (2014) Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. ISME J 6:610–618

    Google Scholar 

  32. Wacklin P, Makivuokko H, Alakulppi N et al (2011) Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One 6:e20113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Morgan XC, Tickle TL, Sokol H et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Hampe J, Franke A, Rosenstiel P et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn’s disease in ATG16L1. Nat Genet 39:207–11

    Article  PubMed  CAS  Google Scholar 

  35. Rioux JD, Xavier RJ, Taylor KD et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Parkes M, Barrett JC, Prescott NJ et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–2

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. McCarroll SA, Huett A, Kuballa P et al (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet 40:1107–12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Cadwell K, Liu JY, Brown SL et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–63

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Cadwell K, Patel KK, Maloney NS et al (2010) Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141:1135–45

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Lawlor G, Moss AC (2010) Cytomegalovirus in inflammatory bowel disease: pathogen or innocent bystander? Inflamm Bowel Dis 16:1620–7

    Article  PubMed  Google Scholar 

  41. Spieker T, Herbst H (2000) Distribution and phenotype of Epstein-Barr virus-infected cells in inflammatory bowel disease. Am J Pathol 157:51–7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Sankaran-Walters S, Ransibrahmanakul K, Grishina I et al (2011) Epstein-Barr virus replication linked to B cell proliferation in inflamed areas of colonic mucosa of patients with inflammatory bowel disease. J Clin Virol: Off Publ Pan Am Soc Clin Virol 50:31–6

    Article  Google Scholar 

  43. Pironi L, Bonvicini F, Gionchetti P et al (2009) Parvovirus b19 infection localized in the intestinal mucosa and associated with severe inflammatory bowel disease. J Clin Microbiol 47:1591–5

    Article  PubMed  PubMed Central  Google Scholar 

  44. Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–16

    Article  PubMed  CAS  Google Scholar 

  45. Ott SJ, Kuhbacher T, Musfeldt M et al (2008) Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol 43:831–41

    Article  PubMed  CAS  Google Scholar 

  46. Iliev ID, Underhill DM (2013) Striking a balance: fungal commensalism versus pathogenesis. Curr Opin Microbiol 16:366–73

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6:33–43

    Article  PubMed  CAS  Google Scholar 

  48. Taylor PR, Tsoni SV, Willment JA et al (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8:31–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Gross O, Gewies A, Finger K et al (2006) Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442:651–6

    Article  PubMed  CAS  Google Scholar 

  50. Ferwerda B, Ferwerda G, Plantinga TS et al (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361:1760–7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Glocker EO, Hennigs A, Nabavi M et al (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361:1727–35

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Sutton CL, Yang H, Li Z, Rotter JI, Targan SR, Braun J (2000) Familial expression of anti-Saccharomyces cerevisiae mannan antibodies in affected and unaffected relatives of patients with Crohn’s disease. Gut 46:58–63

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Seow CH, Stempak JM, Xu W et al (2009) Novel anti-glycan antibodies related to inflammatory bowel disease diagnosis and phenotype. Am J Gastroenterol 104:1426–34

    Article  PubMed  CAS  Google Scholar 

  54. Walker LJ, Aldhous MC, Drummond HE et al (2004) Anti-Saccharomyces cerevisiae antibodies (ASCA) in Crohn’s disease are associated with disease severity but not NOD2/CARD15 mutations. Clin Exp Immunol 135:490–6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. McGovern DP, Gardet A, Torkvist L et al (2010) Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet 42:332–7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Zhernakova A, Festen EM, Franke L et al (2008) Genetic analysis of innate immunity in Crohn’s disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am J Hum Genet 82:1202–10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Iliev ID, Funari VA, Taylor KD et al (2012) Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336:1314–7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–25

    Article  PubMed  CAS  Google Scholar 

  59. Hunter CA (2005) New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 5:521–31

    Article  PubMed  CAS  Google Scholar 

  60. Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8:337–48

    Article  PubMed  CAS  Google Scholar 

  61. Mannon PJ, Fuss IJ, Mayer L et al (2004) Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 351:2069–79

    Article  PubMed  CAS  Google Scholar 

  62. Buonocore S, Ahern PP, Uhlig HH et al (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:1371–5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Sandborn WJ, Feagan BG, Fedorak RN et al (2008) A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology 135:1130–41

    Article  PubMed  CAS  Google Scholar 

  64. Papp KA, Langley RG, Lebwohl M et al (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371:1675–84

    Article  PubMed  CAS  Google Scholar 

  65. Yen D, Cheung J, Scheerens H et al (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116:1310–6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Ahern PP, Schiering C, Buonocore S et al (2010) Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33:279–88

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Sujino T, Kanai T, Ono Y et al (2011) Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells. Gastroenterology 141:1014–23

    Article  PubMed  CAS  Google Scholar 

  68. Ghoreschi K, Laurence A, Yang XP et al (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467:967–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Salehi S, Bankoti R, Benevides L et al (2012) B lymphocyte-induced maturation protein-1 contributes to intestinal mucosa homeostasis by limiting the number of IL-17-producing CD4+ T cells. J Immunol 189:5682–93

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21:467–76

    Article  PubMed  CAS  Google Scholar 

  71. Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK (2006) Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis 12:382–8

    Article  PubMed  Google Scholar 

  72. Elson CO, Cong Y, Weaver CT et al (2007) Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology 132:2359–70

    Article  PubMed  CAS  Google Scholar 

  73. Kullberg MC, Jankovic D, Feng CG et al (2006) IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med 203:2485–94

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Becker C, Dornhoff H, Neufert C et al (2006) Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis. J Immunol 177:2760–4

    Article  PubMed  CAS  Google Scholar 

  75. O’Connor W Jr, Kamanaka M, Booth CJ et al (2009) A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 10:603–9

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ogawa A, Andoh A, Araki Y, Bamba T, Fujiyama Y (2004) Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol 110:55–62

    Article  PubMed  CAS  Google Scholar 

  77. Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–98

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–8

    Article  PubMed  CAS  Google Scholar 

  79. Hovhannisyan Z, Treatman J, Littman DR, Mayer L (2011) Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology 140:957–65

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Sakuraba A, Sato T, Kamada N, Kitazume M, Sugita A, Hibi T (2009) Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn’s disease. Gastroenterology 137:1736–45

    Article  PubMed  CAS  Google Scholar 

  81. Lee Y, Awasthi A, Yosef N et al (2012) Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 13:991–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. McGovern DP, Rotter JI, Mei L et al (2009) Genetic epistasis of IL23/IL17 pathway genes in Crohn’s disease. Inflamm Bowel Dis 15:883–9

    Article  PubMed  PubMed Central  Google Scholar 

  83. Holtta V, Klemetti P, Sipponen T et al (2008) IL-23/IL-17 immunity as a hallmark of Crohn’s disease. Inflamm Bowel Dis 14:1175–84

    Article  PubMed  Google Scholar 

  84. Seiderer J, Elben I, Diegelmann J et al (2008) Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn’s disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis 14:437–45

    Article  PubMed  Google Scholar 

  85. Shih DQ, Targan SR, McGovern D (2008) Recent advances in IBD pathogenesis: genetics and immunobiology. Curr Gastroenterol Rep 10:568–75

    Article  PubMed  PubMed Central  Google Scholar 

  86. Taraban VY, Slebioda TJ, Willoughby JE et al (2011) Sustained TL1A expression modulates effector and regulatory T-cell responses and drives intestinal goblet cell hyperplasia. Mucosal Immunol 4:186–96

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Prehn JL, Thomas LS, Landers CJ, Yu QT, Michelsen KS, Targan SR (2007) The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol 178:4033–8

    Article  PubMed  CAS  Google Scholar 

  88. Shih DQ, Kwan LY, Chavez V et al (2009) Microbial induction of inflammatory bowel disease associated gene TL1A (TNFSF15) in antigen presenting cells. Eur J Immunol 39:3239–50

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Meylan F, Davidson TS, Kahle E et al (2008) The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity 29:79–89

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Kamada N, Hisamatsu T, Honda H et al (2010) TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn’s disease. Inflamm Bowel Dis 16:568–75

    Article  PubMed  Google Scholar 

  91. Endo K, Kinouchi Y, Kakuta Y, Ueki N, Takahashi S, Shimosegawa T (2009) Involvement of NF-kappa B pathway in TL1A gene expression induced by lipopolysaccharide. Cytokine 2009

  92. Takedatsu H, Michelsen KS, Wei B et al (2008) TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology 135:552–67

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Shih DQ, Zheng L, Zhang X et al (2014) Inhibition of a novel fibrogenic factor Tl1a reverses established colonic fibrosis. Mucosal Immunol. doi:10.1038/mi.2014.34

    PubMed  Google Scholar 

  94. Jones GW, Stumhofer JS, Foster T et al (2011) Naive and activated T cells display differential responsiveness to TL1A that affects Th17 generation, maintenance, and proliferation. FASEB J: Off Publ Fed Am Soc Exp Biol 25:409–19

    Article  CAS  Google Scholar 

  95. Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–7

    Article  PubMed  CAS  Google Scholar 

  96. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–89

    Article  PubMed  CAS  Google Scholar 

  97. Mangan PR, Harrington LE, O’Quinn DB et al (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–4

    Article  PubMed  CAS  Google Scholar 

  98. Leonardi C, Matheson R, Zachariae C et al (2012) Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med 366:1190–9

    Article  PubMed  CAS  Google Scholar 

  99. Hueber W, Sands BE, Lewitzky S et al (2012) Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61:1693–700

    Article  PubMed  CAS  Google Scholar 

  100. Wallace KL ZL, Kanazawa Y, Zhang H, Ichikawa R, Chen J, Sidhu M, Zhang X, Pothoulakis C, Koon HW, Targan S, Shih DQ (2014) Tl1a modulates the differential effect of IL-17 blockade on mucosal inflammation. Gastroenterology 146:S-133

    Article  Google Scholar 

  101. Michelsen KS, Thomas LS, Taylor KD et al (2009) IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS One 4:e4719

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Targan.

Additional information

This article is a contribution to the special issue on Mechanisms of Tissue Injury in Autoimmune Diseases - Guest Editor: Dan Eilat

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanna, P.V., Shih, D.Q., Haritunians, T. et al. Use of animal models in elucidating disease pathogenesis in IBD. Semin Immunopathol 36, 541–551 (2014). https://doi.org/10.1007/s00281-014-0444-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0444-6

Keywords

Navigation