Skip to main content

Advertisement

Log in

The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Cyclophosphamide is an alkylating agent belonging to the group of oxazaphosporines. As cyclophosphamide is in clinical use for more than 40 years, there is a lot of experience using this drug for the treatment of cancer and as an immunosuppressive agent for the treatment of autoimmune and immune-mediated diseases. Besides antimitotic and antireplicative effects, cyclophosphamide has immunosuppressive as well as immunomodulatory properties. Cyclophosphamide shows selectivity for T cells and is therefore now frequently used in tumour vaccination protocols and to control post-transplant allo-reactivity in haplo-identical unmanipulated bone marrow after transplantation. The schedule of administration is of special importance for the immunological effect: while cyclophosphamide can be used in high-dose therapy for the complete eradication of haematopoietic cells, lower doses of cyclophosphamide are relatively selective for T cells. Of special interest is the fact that a single administration of low-dose cyclophosphamide is able to selectively suppress regulatory T cells (Tregs). This effect can be used to counteract immunosuppression in cancer. However, cyclophosphamide can also increase the number of myeloid-derived suppressor cells. Combination of cyclophosphamide with other immunomodulatory agents could be a promising approach to treat different forms of advanced cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brock N, Wilmanns H (1958) Effect of a cyclic nitrogen mustard-phosphamidester on experimentally induced tumors in rats; chemotherapeutic effect and pharmacological properties of B518 ASTA [German]. Dtsch Med Wochenschr 83:453–458

    Article  CAS  PubMed  Google Scholar 

  2. Emadi A, Jones RJ, Brodsky RA (2009) Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol 6:638–647

    Article  CAS  PubMed  Google Scholar 

  3. Baxter Oncology. German Product Summary Endoxan®. http://www.fachinfo.de/suche/fi/000728. Accessed Jan 2015

  4. Santos GW, Sensenbrenner LL, Burke PJ, Mullins GM, Blas WB, Tutschka PJ, Slavin RE (1972) The use of cyclophosphamide for clinical marrow transplantation. Transpl Proc 4:559–564

    CAS  Google Scholar 

  5. Wang JY, Prorok G, Vaughan WP (1993) Cytotoxicity, DNA cross-linking, and DNA single-strand breaks induced by cyclophosphamide in a rat leukemia in vivo. Cancer Chemother Pharmacol 31:381–386

    Article  CAS  PubMed  Google Scholar 

  6. Fleer R, Brendel M (1981) Toxicity, interstrand cross-links and DNA fragmentation induced by ‘activated’ cyclophosphamide in yeast. Chem Biol Interact 37:123–140

    Article  CAS  PubMed  Google Scholar 

  7. Van Putten LM, Lelieveld P, Kram-Idsenga LKJ (1972) Cell-cycle specificity and therapeutic effectiveness of cytostatic agents. Cancer Chemother Rep 56:691–700

    PubMed  Google Scholar 

  8. Candeias SM, Gaipl US (2016) The immune system in cancer prevention, development and therapy. Anticancer Agents Med Chem 16:101–107

    Article  CAS  PubMed  Google Scholar 

  9. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsung K, Norton JA (2015) An immunological view of chemotherapy. Immunotherapy. 7:941–943

    Article  CAS  PubMed  Google Scholar 

  11. Yule SM, Boddy AV, Cole M, Price L, Wyllie R, Tasso MJ, Pearson AD, Idle JR (1995) Cyclophosphamide metabolism in children. Cancer Res 55:803–809

    CAS  PubMed  Google Scholar 

  12. Bohnenstengel F, Hofmann U, Eichelbaum M, Kroemer HK (1996) Characterization of the cytochrome P450 involved in side-chain oxidation of cyclophosphamide in humans. Eur J Clin Pharmacol 51:297–301

    Article  CAS  PubMed  Google Scholar 

  13. Brüggemann SK, Kisro J, Wagner T (1997) Ifosfamide cytotoxicity on human tumor and renal cells: role of chloroacetaldehyde in comparison to 4-hydroxyifosfamide. Cancer Res 57:2676–2680

    PubMed  Google Scholar 

  14. Sood C, O’Brien PJ (1996) 2-Chloroacetaldehyde-induced cerebral glutathione depletion and neurotoxicity. Br J Cancer Suppl 27:S287–S293

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Audemard-Verger A, Martin Silva N, Verstuyft C, Costedoat-Chalumeau N, Hummel A, Le Guern V, Sacré K, Meyer O, Daugas E, Goujard C, Sultan A, Lobbedez T, Galicier L, Pourrat J, Le Hello C, Godin M, Morello R, Lambert M, Hachulla E, Vanhille P, Queffeulou G, Potier J, Dion JJ, Bataille P, Chauveau D, Moulis G, Farge-Bancel D, Duhaut P, Saint-Marcoux B, Deroux A, Manuzak J, Francès C, Aumaitre O, Bezanahary H, Becquemont L, Bienvenu B (2016) Glutathione S transferases polymorphisms are independent prognostic factors in lupus nephritis treated with cyclophosphamide. PLoS One 11:e0151696. doi:10.1371/journal.pone.0151696

    Article  PubMed  PubMed Central  Google Scholar 

  16. de Jonge ME, Huitema AD, Rodenhuis S, Beijnen JH (2005) Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 44:1135–1164

    Article  PubMed  Google Scholar 

  17. Yule SM, Price L, Cole M, Pearson AD, Boddy AV (2001) Cyclophosphamide metabolism in children following a 1-h and a 24-h infusion. Cancer Chemother Pharmacol 47:222–228

    Article  CAS  PubMed  Google Scholar 

  18. Svensson HM, Ljungman P, Björkstrand B, Olsson H, Bielenstein M, Abdel-Rehim M, Nilsson C, Johansson M, Karlsson MO (1999) A mechanism-based pharmacokinetic-enzyme model for cyclophosphamide autoinduction in breast cancer patients. Br J Clin Pharmacol 48:669–677

    PubMed  PubMed Central  Google Scholar 

  19. McCune JS, Batchelder A, Guthrie KA, Witherspoon R, Appelbaum FR, Phillips B, Vicini P, Salinger DH, McDonald GB (2009) Personalized dosing of cyclophosphamide in the total body irradiation-cyclophosphamide conditioning regimen: a phase II trial in patients with hematologic malignancy. Clin Pharmacol Ther 85:615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hipkens JH, Struck RF, Gurtoo HL (1981) Role of aldehyde dehydrogenase in the metabolism-dependent biological activity of cyclophosphamide. Cancer Res 41:3571–3583

    CAS  PubMed  Google Scholar 

  21. Jones RJ, Barber JP, Vala MS, Collector MI, Kaufmann SH, Ludeman SM, Colvin OM, Hilton J (1995) Assessment of aldehyde dehydrogenase in viable cells. Blood 85:2742–2746

    CAS  PubMed  Google Scholar 

  22. Pinto N, Ludeman SM, Dolan ME (2009) Drug focus: pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics 10:1897–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhong S, Huang M, Yang X, Liang L, Wang Y, Romkes M, Duan W, Chan E, Zhou SF (2006) Relationship of glutathione S-transferase genotypes with side-effects of pulsed cyclophosphamide therapy in patients with systemic lupus erythematosus. Br J Clin Pharmacol 62:457–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Penel N, Adenis A, Bocci G (2012) Cyclophosphamide-based metronomic chemotherapy: after 10 years of experience, where do we stand and where are we going? Crit Rev Oncol Hematol 82:40–50

    Article  PubMed  Google Scholar 

  25. Potel J, Brock N (1965) The influence of anticarcinogenic substances on immunologic reactions. 2. The influence of N, N-bis-(2-chlorethyl)-N’, O-propylenephosphoric acid ester diamide on antibody formation. Arzneimittelforschung 15:659–666

    CAS  PubMed  Google Scholar 

  26. Müller US, Wirth W, Junge-Hülsing G, Hauss WH (1973) Suppressive effects in mesenchyme and immunosuppressive effects of cytostatics. Int J Clin Pharmacol 7:228–233

    PubMed  Google Scholar 

  27. Potel J (1969) Immunsuppression durch kanzerotoxische Substanzen. Organtransplantation Immunologie und Klinik. F.K.Schattauer Verlag Stuttgart

  28. Müller US, Wirth W, Thöne F, Junge-Hülsing G, Hauss WH (1973) Animal experiments on the anti-inflammatory and immunosuppressive effect of cytostatic agents. Arzneimittelforschung 23:487–491

    PubMed  Google Scholar 

  29. Brock N, Kuhlmann J (1974) Pharmacological studies with alkylsulfonyloxyalkyl substituted and chloroethyl substituted oxazaphosphorine-2-oxides. 1. Communication: relationship between chemical structure and pharmacological action. Arzneimittelforschung 24:1139–1149

    CAS  PubMed  Google Scholar 

  30. Polak L, Turk JL (1974) Reversal of immunological tolerance by cyclophosphamide through inhibition of suppressor cell activity. Nature 249:654–656

    Article  CAS  PubMed  Google Scholar 

  31. Röllinghoff M, Starzinski-Powitz A, Pfizenmaier K, Wagner H (1977) Cyclophosphamide-sensitive T lymphocytes suppress the in vivo generation of antigen-specific cytotoxic T lymphocytes. J Exp Med 145:455–459

    Article  PubMed  PubMed Central  Google Scholar 

  32. Awwad M, North RJ (1988) Cyclophosphamide (Cy)-facilitated adoptive immunotherapy of a Cy-resistant tumour. Evidence that Cy permits the expression of adoptive T-cell mediated immunity by removing suppressor T cells rather than by reducing tumour burden. Immunology 65:87–92

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Le DT, Jaffee EM (2012) Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res 72:3439–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Z, Huang Q, Liu G, Dang L, Chu D, Tao K, Wang W (2014) Presence of FoxP3(+)Treg cells is correlated with colorectal cancer progression. Int J Clin Exp Med 7:1781–1785

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li K, Chen F, Xie H (2016) Decreased FoxP3+ and GARP+ Tregs to neoadjuvant chemotherapy associated with favorable prognosis in advanced gastric cancer. Onco Targets Therapy 9:3525–3533

    Article  Google Scholar 

  36. Engels CC, Charehbili A, van de Velde CJ, Bastiaannet E, Sajet A, Putter H, van Vliet EA, van Vlierberghe RL, Smit VT, Bartlett JM, Seynaeve C, Liefers GJ, Kuppen PJ (2015) The prognostic and predictive value of Tregs and tumor immune subtypes in postmenopausal, hormone receptor-positive breast cancer patients treated with adjuvant endocrine therapy: a Dutch TEAM study analysis. Breast Cancer Res Treat 149:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anderson BJ, Holford N (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332

    Article  CAS  PubMed  Google Scholar 

  38. Peng S, Lyford-Pike S, Akpeng B, Wu A, Hung CF, Hannaman D, Saunders JR, Wu TC, Pai SI (2013) Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine. Cancer Immunol Immunother 62:171–182

    Article  CAS  PubMed  Google Scholar 

  39. Son CH, Shin DY, Kim SD, Park HS, Jung MH, Bae JH, Kang CD, Yang K, Park YS (2012) Improvement of antitumor effect of intratumoral injection of immature dendritic cells into irradiated tumor by cyclophosphamide in mouse colon cancer model. J Immunother 35:607–614

    Article  CAS  PubMed  Google Scholar 

  40. Tongu M, Harashima N, Yamada T, Harada T, Harada M (2010) Immunogenic chemotherapy with cyclophosphamide and doxorubicin against established murine carcinoma. Cancer Immunol Immunother 59:769–777

    Article  CAS  PubMed  Google Scholar 

  41. Salem ML, Kadima AN, El-Naggar SA, Rubinstein MP, Chen Y, Gillanders WE, Cole DJ (2007) Defining the ability of cyclophosphamide preconditioning to enhance the antigen-specific CD8+ T-cell response to peptide vaccination: creation of a beneficial host microenvironment involving type I IFNs and myeloid cells. J Immunother 30:40–53

    Article  CAS  PubMed  Google Scholar 

  42. Salem ML, Al-Khami AA, El-Naggar SA, Díaz-Montero CM, Chen Y, Cole DJ (2010) Cyclophosphamide induces dynamic alterations in the host microenvironments resulting in a Flt3 ligand-dependent expansion of dendritic cells. J Immunol 184:1737–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Angulo I, de las Heras FG, García-Bustos JF, Gargallo D, Muñoz-Fernández MA, Fresno M (2000) Nitric oxide-producing CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood 95:212–220

    CAS  PubMed  Google Scholar 

  44. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminate splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhance antitumor immune activity. Clin Cancer Res 11:6713–6721

    Article  CAS  PubMed  Google Scholar 

  45. Tongu M, Harashima N, Monma H, Inao T, Yamada T, Kawauchi H, Harada M (2013) Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunol Immunother 62:383–391

    Article  CAS  PubMed  Google Scholar 

  46. Cao Y, Zhao J, Yang Z, Cai Z, Zhang B, Zhou Y, Shen GX, Chen X, Li S, Huang B (2010) CD4+ FOXP3+ regulatory T cell depletion by low-dose cyclophosphamide prevents recurrence in patients with large condylomata acuminata after laser therapy. Clin Immunol 136:21–29

    Article  CAS  PubMed  Google Scholar 

  47. Ge Y, Domschke C, Stoiber N, Schott S, Heil J, Rom J, Blumenstein M, Thum J, Sohn C, Schneeweiss A, Beckhove P, Schuetz F (2012) Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol Immunother 61:353–362

    Article  CAS  PubMed  Google Scholar 

  48. Ellebaek E, Engell-Noerregaard L, Iversen TZ, Froesig TM, Munir S, Hadrup SR, Andersen MH (2012) Svane IM metastatic melanoma patients treated with dendritic cell vaccination, interleukin-2 and metronomic cyclophosphamide: results from a phase II trial. Cancer Immunol Immunother 61:1791–1804

    Article  CAS  PubMed  Google Scholar 

  49. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, Hilf N, Schoor O, Fritsche J, Mahr A, Maurer D, Vass V, Trautwein C, Lewandrowski P, Flohr C, Pohla H, Stanczak JJ, Bronte V, Mandruzzato S, Biedermann T, Pawelec G, Derhovanessian E, Yamagishi H, Miki T, Hongo F, Takaha N, Hirakawa K, Tanaka H, Stevanovic S, Frisch J, Mayer-Mokler A, Kirner A, Rammensee HG, Reinhardt C, Singh-Jasuja H (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254–1261

    Article  CAS  PubMed  Google Scholar 

  50. Viaud S, Flament C, Zoubir M, Pautier P, LeCesne A, Ribrag V, Soria JC, Marty V, Vielh P, Robert C, Chaput N, Zitvogel L (2011) Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res 71:661–665

    Article  CAS  PubMed  Google Scholar 

  51. Noguchi M, Moriya F, Koga N, Matsueda S, Sasada T, Yamada A, Kakuma T, Itoh K (2016) A randomized phase II clinical trial of personalized peptide vaccination with metronomic low-dose cyclophosphamide in patients with metastatic castration-resistant prostate cancer. Cancer Immunol Immunother 65:151–160

    Article  CAS  PubMed  Google Scholar 

  52. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59

    Article  CAS  PubMed  Google Scholar 

  53. Luznik L, O’Donnell PV, Fuchs EJ (2012) Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Semin Oncol 39:683–693

    Article  CAS  PubMed  Google Scholar 

  54. Kasamon YL, Jones RJ, Gocke CD, Blackford AL, Seifter EJ, Davis-Sproul JM, Gore SD, Ambinder RF (2011) Extended follow-up of autologous bone marrow transplantation with 4-hydroperoxy-cyclophosphamide (4-HC) purging for indolent or transformed non-Hodgkin lymphomas. Biol Blood Marrow Transpl 17:365–367

    Article  CAS  Google Scholar 

  55. Kanakry CG, Ganguly S, Zahurak M, Bolaños-Meade J, Thoburn C, Perkins B, Fuchs EJ, Jones RJ, Hess AD, Luznik L (2013) Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med 5:211ra157

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ninomiya S, Narala N, Huye L, Yagyu S, Savoldo B, Dotti G, Heslop HE, Brenner MK, Rooney CM, Ramos CA (2015) Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood 125:3905–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yoshikawa T, Hara T, Tsurumi H, Goto N, Hoshi M, Kitagawa J, Kanemura N, Kasahara S, Ito H, Takemura M, Saito K, Seishima M, Takami T, Moriwaki H (2010) Serum concentration of L-kynurenine predicts the clinical outcome of patients with diffuse large B-cell lymphoma treated with R-CHOP. Eur J Haematol 84:304–309

    Article  CAS  PubMed  Google Scholar 

  58. Ninomiya S, Hara T, Tsurumi H, Hoshi M, Kanemura N, Goto N, Kasahara S, Shimizu M, Ito H, Saito K, Hirose Y, Yamada T, Takahashi T, Seishima M, Takami T, Moriwaki H (2011) Indoleamine 2,3-dioxygenase in tumor tissue indicates prognosis in patients with diffuse large B-cell lymphoma treated with R-CHOP. Ann Hematol 90:409–416

    Article  CAS  PubMed  Google Scholar 

  59. Vacchelli E, Aranda F, Bloy N, Buqué A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L (2015) Trial Watch—immunostimulation with cytokines in cancer therapy. Oncoimmunology 5:e1115942

    Article  PubMed  Google Scholar 

  60. Vacchelli E, Aranda F, Eggermont A, Sautès-Fridman C, Tartour E, Kennedy EP, Platten M, Zitvogel L, Kroemer G, Galluzzi L (2014) Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 3(10):e957994

    Article  PubMed  PubMed Central  Google Scholar 

  61. Niemeyer U, Pohl J (2011) Einmalig dosierte Oxazaphosphorine zur Therapie von Krankheiten. German Patent Application DE102011085695 A1, 3rd November, 2011

  62. Ninomiya S, Narala N, Huye L, Yagyu S, Savoldo B, Dotti G, Heslop HE, Brenner MK, Rooney CM, Ramos CA (2015) Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood 125(25):3905–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dimeloe S, Frick C, Fischer M, Gubser PM, Razik L, Bantug GR, Ravon M, Langenkamp A, Hess C (2014) Human regulatory T cells lack the cyclophosphamide-extruding transporter ABCB1 and are more susceptible to cyclophosphamide-induced apoptosis. Eur J Immunol 44:3614–3620

    Article  CAS  PubMed  Google Scholar 

  64. Szakács G, Váradi A, Özvegy-Laczka C, Sark B (2008) The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox). Drug Discov Today 13:379–393

    Article  PubMed  Google Scholar 

  65. Zhang J, Tian Q, Yung Chan S, Chuen Li S, Zhou S, Duan W, Zhu YZ (2005) Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metab Rev. 37:611–703

    Article  CAS  PubMed  Google Scholar 

  66. Hsu FT, Chen TC, Chuang HY, Chang YF, Hwang JJ (2015) Enhancement of adoptive T cell transfer with single low dose pretreatment of doxorubicin or paclitaxel in mice. Oncotarget 6:44134–44150

    PubMed  PubMed Central  Google Scholar 

  67. Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B (2010) Selective depletion of CD4+ CD25+ Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res 70:4850–4858

    Article  CAS  PubMed  Google Scholar 

  68. Viaud S, Daillère R, Boneca IG, Lepage P, Pittet MJ, Ghiringhelli F, Trinchieri G, Goldszmid R, Zitvogel L (2014) Harnessing the intestinal microbiome for optimal therapeutic immunomodulation. Cancer Res 74:4217–4221

    Article  CAS  PubMed  Google Scholar 

  69. Francescone R, Hou V, Grivennikov SI (2014) Microbiome, inflammation, and cancer. Cancer J 20:181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Bérard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, Opolon P, Yessaad N, Vivier E, Ryffel B, Elson CO, Doré J, Kroemer G, Lepage P, Boneca IG, Ghiringhelli F, Zitvogel L (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Madondo MT, Quinn M, Plebanski M (2016) Low dose cyclophosphamide: mechanisms of T cell modulation. Cancer Treat Rev 42:3–9

    Article  PubMed  Google Scholar 

  72. van der Most RG, Currie AJ, Mahendran S, Prosser A, Darabi A, Robinson BW, Nowak AK, Lake RA (2009) Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother 58:1219–1228

    Article  PubMed  Google Scholar 

  73. Kohyama M, Sugahara D, Sugiyama S, Yagita H, Okumura K, Hozumi N (2004) Inducible costimulator-dependent IL-10 production by regulatory T cells specific for self-antigen. Proc Natl Acad Sci USA 101:4192–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kanakry CG, Ganguly S, Luznik L (2015) Situational aldehyde dehydrogenase expression by regulatory T cells may explain the contextual duality of cyclophosphamide as both a pro-inflammatory and tolerogenic agent. Oncoimmunology 4:e974393

    Article  PubMed  PubMed Central  Google Scholar 

  75. van der Most RG, Currie AJ, Robinson BW, Lake RA (2008) Decoding dangerous death: how cytotoxic chemotherapy invokes inflammation, immunity or nothing at all. Cell Death Differ 15:13–20

    Article  PubMed  Google Scholar 

  76. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28:690–714

    Article  CAS  PubMed  Google Scholar 

  77. Kawano M, Tanaka K, Itonaga I, Iwasaki T, Miyazaki M, Ikeda S, Tsumura H (2016) Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma. Oncol Lett 11:2169–2175

    PubMed  PubMed Central  Google Scholar 

  78. Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L (2011) Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol 33:369–383

    Article  CAS  PubMed  Google Scholar 

  79. Patutina OA, Mironova NL, Logashenko EB, Popova NA, Nikolin VP, Vasil’ev GV, Kaledin VI, Zenkova MA, Vlasov VV (2012) Cyclophosphamide metabolite inducing apoptosis in RLS mouse lymphosarcoma cells is a substrate for P-glycoprotein. Bull Exp Biol Med 152:348–352

    Article  CAS  PubMed  Google Scholar 

  80. Grishanova AY, Melnikova EV, Kaledin VI, Nikolin VP, Lyakhovich VV (2005) Possible role of P-glycoprotein in cyclophosphamide resistance of transplanted mouse RLS lymphosarcoma. Bull Exp Biol Med 139:611–614

    Article  CAS  PubMed  Google Scholar 

  81. Brayboy LM, Oulhen N, Witmyer J, Robins J, Carson S, Wessel GM (2013) Multidrug-resistant transport activity protects oocytes from chemotherapeutic agents and changes during oocyte maturation. Fertil Steril 100:1428–1435

    Article  CAS  PubMed  Google Scholar 

  82. Joy MS, La M, Wang J, Bridges AS, Hu Y, Hogan SL, Frye RF, Blaisdell J, Goldstein JA, Dooley MA, Brouwer KL, Falk RJ (2012) Cyclophosphamide and 4-hydroxycyclophosphamide pharmacokinetics in patients with glomerulonephritis secondary to lupus and small vessel vasculitis. Br J Clin Pharmacol 74:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim IW, Yun HY, Choi B, Han N, Kim MG, Park S, Oh JM (2013) Population pharmacokinetics analysis of cyclophosphamide with genetic effects in patients undergoing hematopoietic stem cell transplantation. Eur J Clin Pharmacol 69:1543–1551

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Hempel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlmann, M., Hempel, G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol 78, 661–671 (2016). https://doi.org/10.1007/s00280-016-3152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3152-1

Keywords

Navigation