Skip to main content

Advertisement

Log in

Adoptive transfer of HER2/neu-specific T cells expanded with alternating gamma chain cytokines mediate tumor regression when combined with the depletion of myeloid-derived suppressor cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adoptive immunotherapy (AIT) using ex vivo-expanded HER-2/neu-specific T cells has shown initial promising results against disseminated tumor cells in the bone marrow. However, it has failed to promote objective responses against primary tumors. We report for the first time that alternating gamma chain cytokines (IL-2, IL-7 and IL-15) ex vivo can expand the neu-specific lymphocytes that can kill breast tumors in vitro. However, the anti-tumor efficacy of these neu-specific T cells was compromised by the increased levels of myeloid-derived suppressor cells (MDSC) during the premalignant stage in FVBN202 transgenic mouse model of breast carcinoma. Combination of AIT with the depletion of MDSC, in vivo, resulted in the regression of neu positive primary tumors. Importantly, neu-specific antibody responses were restored only when AIT was combined with the depletion of MDSC. In vitro studies determined that MDSC caused inhibition of T cell proliferation in a contact-dependent manner. Together, these results suggest that combination of AIT with depletion or inhibition of MDSC could lead to the regression of mammary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen SD, Garrett JT, Rawale SV, Jones AL, Phillips G, Forni G, Morris JC, Oshima RG, Kaumaya PT (2007) Peptide vaccines of the HER-2/neu dimerization loop are effective in inhibiting mammary tumor growth in vivo. J Immunol 179(1):472–482

    PubMed  CAS  Google Scholar 

  2. Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann C, Nährig J, Fend F, Weber W, Busch DH, Peschel C (2008) Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother 57(2):271–280

    Article  PubMed  Google Scholar 

  3. Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5(8):641–654

    Article  PubMed  CAS  Google Scholar 

  4. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176(1):284–290

    PubMed  CAS  Google Scholar 

  5. Chin CS, Graham LJ, Hamad GG, George KR, Bear HD (2001) Bryostatin/ionomycin-activated T cells mediate regression of established tumors. J Surg Res 98(2):108–115

    Article  PubMed  CAS  Google Scholar 

  6. Chin CS, Miller CH, Graham L, Parviz M, Zacur S, Patel B, Duong A, Bear HD (2004) Bryostatin 1/ionomycin (B/I) ex vivo stimulation preferentially activates L-selectinlow tumor-sensitized lymphocytes. Int Immunol 16(9):1283–1294

    Article  PubMed  CAS  Google Scholar 

  7. Curigliano G, Spitaleri G, Pietri E, Rescigno M, De Braud F, Cardillo A, Munzone E, Rocca A, Bonizzi G, Brichard V, Orlando L, Goldhirsch A (2006) Breast cancer vaccines: a clinical reality or fairy tale? Ann Oncol 17(5):750–762

    Article  PubMed  CAS  Google Scholar 

  8. Dang Y, Knutson KL, Goodell V, Goodell V, dela Rosa C, Salazar LG, Higgins D, Childs J, Disis ML (2007) Tumor antigen-specific T-cell expansion is greatly facilitated by in vivo priming. Clin Cancer Res 13(6):1883–1891

    Article  PubMed  CAS  Google Scholar 

  9. Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O’Malley KA, Wynn JL, Antonenko S, Al-Quran SZ, Swan R, Chung CS, Atkinson MA, Ramphal R, Gabrilovich DI, Reeves WH, Ayala A, Phillips J, Laface D, Heyworth PG, Clare-Salzler M, Moldawer LL (2007) MyD88-dependent expansion of an immature GR-1(+) CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204(6):1463–1474

    Article  PubMed  CAS  Google Scholar 

  10. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2008) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 57(2):271–280

    Google Scholar 

  11. Dela Cruz JS, Lau SY, Ramirez EM, De Giovanni C, Forni G, Morrison SL, Penichet ML (2003) Protein vaccination with the HER2/neu extracellular domain plus anti-HER2/neu antibody-cytokine fusion proteins induces a protective anti-HER2/neu immune response in mice. Vaccine 21(13–14):1317–1326

    Article  PubMed  CAS  Google Scholar 

  12. Emens LA, Reilly RT, Jaffee EM (2005) Breast cancer vaccines: maximizing cancer treatment by tapping into host immunity. Endocr Relat Cancer 12(1):1–17

    Article  PubMed  CAS  Google Scholar 

  13. Ezernitchi AV, Vaknin I, Cohen-Daniel L, Levy O, Manaster E, Halabi A, Pikarsky E, Shapira L, Baniyash M (2006) TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 177(7):4763–4772

    PubMed  CAS  Google Scholar 

  14. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952

    Article  PubMed  CAS  Google Scholar 

  15. Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166(9):5398–5406

    PubMed  CAS  Google Scholar 

  16. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borello I, Zanovello P, Bicciato S, Bronte V (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116(10):2777–2790

    Article  PubMed  CAS  Google Scholar 

  17. Goni O, Alcaide P, Fresno M (2002) Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+)immature myeloid suppressor cells. Int Immunol 14(10):1125–1134

    Article  PubMed  CAS  Google Scholar 

  18. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89(22):10578–10582

    Article  PubMed  CAS  Google Scholar 

  19. Habibi M, Kmieciak M, Graham L, Morales JK, Bear HD, Manjili MH (2008) Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis. Breast Cancer Res Treat

  20. Haux J, Johnsen AC, Steinkjer B, Egeberg K, Sundan A, Espevik T (1999) The role of interleukin-2 in regulating the sensitivity of natural killer cells for Fas-mediated apoptosis. Cancer Immunol Immunother 48(2–3):139–146

    Article  PubMed  CAS  Google Scholar 

  21. Huster KM, Busch V, Schiemann M, Linkemann K, Kerksiek KM, Wagner H, Busch DH (2004) Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8 + memory T cell subsets. Proc Natl Acad Sci USA 101(15):5610–5615

    Article  PubMed  CAS  Google Scholar 

  22. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4(12):1191–1198

    Article  PubMed  CAS  Google Scholar 

  23. Kmieciak M, Knutson KL, Dumur CI, Manjili MH (2007) HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses. Eur J Immunol 37(3):675–685

    Article  PubMed  CAS  Google Scholar 

  24. Kmieciak M, Morales JK, Morales J, Bolesta E, Grimes M, Manjili MH (2008) Danger signals and nonself entity of tumor antigen are both required for eliciting effective immune responses against HER-2/neu positive mammary carcinoma: implications for vaccine design. Cancer Immunol Immunother 57(9):1391–1398

    Article  PubMed  CAS  Google Scholar 

  25. Knutson KL, Almand B, Dang Y, Disis ML (2004) Neu antigen-negative variants can be generated after neu-specific antibody therapy in neu transgenic mice. Cancer Res 64(3):1146–1151

    Article  PubMed  CAS  Google Scholar 

  26. Ko HJ, Kim YJ, Kim YS, Chang WS, Ko SY, Chang SY, Sakaguchi S, Kang CY (2007) A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res 67(15):7477–7486

    Article  PubMed  CAS  Google Scholar 

  27. Kusmartsev SA, Li Y, Chen SH (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165(2):779–785

    PubMed  CAS  Google Scholar 

  28. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168(2):689–695

    PubMed  CAS  Google Scholar 

  29. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129

    Article  PubMed  CAS  Google Scholar 

  30. Mueller YM, Makar V, Bojczuk PM, Witek J, Katsikis PD (2003) IL-15 enhances the function and inhibits CD95/Fas-induced apoptosis of human CD4+ and CD8+ effector-memory T cells. Int Immunol 15(1):49–58

    Article  PubMed  CAS  Google Scholar 

  31. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828–835

    Article  PubMed  CAS  Google Scholar 

  32. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC (2007) Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13(2):721s–726s

    Article  PubMed  CAS  Google Scholar 

  33. Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK (1998) Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8(5):615–623

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202(7):931–939

    Article  PubMed  CAS  Google Scholar 

  35. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64(16):5839–5849

    Article  PubMed  CAS  Google Scholar 

  36. Sabel MS, Arora A, Su G, Chang AE (2006) Adoptive immunotherapy of breast cancer with lymph node cells primed by cryoablation of the primary tumor. Cryobiology 53(3):360–366

    Article  PubMed  CAS  Google Scholar 

  37. Sakai K, Yokote H, Murakami-Murofushi K, Tamura T, Saijo N, Nishio K (2007) Pertuzumab, a novel HER dimerization inhibitor, inhibits the growth of human lung cancer cells mediated by the HER3 signaling pathway. Cancer Sci 98(9):1498–1503

    Article  PubMed  CAS  Google Scholar 

  38. Schluns KS, Lefrancois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3(4):269–279

    Article  PubMed  CAS  Google Scholar 

  39. Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16(1):53–65

    Article  PubMed  CAS  Google Scholar 

  40. Stoklasek TA, Schluns KS, Lefrancois L (2006) Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity in vivo. J Immunol 177(9):6072–6080

    PubMed  CAS  Google Scholar 

  41. Tuttle TM, Inge TH, Bethke KP, McCrady CW, Pettit GR, Bear HD (1992) Activation and growth of murine tumor-specific T-cells which have in vivo activity with bryostatin 1. Cancer Res 52(3):548–553

    PubMed  CAS  Google Scholar 

  42. Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6(8):595–601

    Article  PubMed  CAS  Google Scholar 

  43. Weng NP, Liu K, Catalfamo M, Li Y, Henkart PA (2002) IL-15 is a growth factor and an activator of CD8 memory T cells. Ann N Y Acad Sci 975:46–56

    Article  PubMed  CAS  Google Scholar 

  44. Worschech A, Kmieciak M, Knutson KL, Bear HD, Szalay AA, Wang E, Marincola FM, Manjili MH (2008) Signatures associated with rejection or recurrence in HER-2/neu-positive mammary tumors. Cancer Res 68(7):2436–2446

    Article  PubMed  CAS  Google Scholar 

  45. Young MR, Lathers DM (1999) Myeloid progenitor cells mediate immune suppression in patients with head and neck cancers. Int J Immunopharmacol 21(4):241–252

    Article  PubMed  CAS  Google Scholar 

  46. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65(8):3044–3048

    PubMed  CAS  Google Scholar 

  47. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA (2007) IL-2 is essential for TGF-beta to convert naive CD4+ CD25- cells to CD25+ Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178(4):2018–2027

    PubMed  CAS  Google Scholar 

  48. Zhou J, Zhong Y (2004) Breast cancer immunotherapy. Cell Mol Immunol 1(4):247–255

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 CA104757 grant (M. H. Manjili) and flow cytometry shared resources facility supported in part by the NIH grant P30CA16059. We thank Daniel Conrad and Jamie Sturgill for their assistance with purification of the anti-Gr1 antibody. We gratefully acknowledge the support of VCU Massey Cancer Centre and the Commonwealth Foundation for Cancer Research, Department of Defense Grant BC083048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud H. Manjili.

Additional information

J. K. Morales and M. Kmieciak have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, J.K., Kmieciak, M., Graham, L. et al. Adoptive transfer of HER2/neu-specific T cells expanded with alternating gamma chain cytokines mediate tumor regression when combined with the depletion of myeloid-derived suppressor cells. Cancer Immunol Immunother 58, 941–953 (2009). https://doi.org/10.1007/s00262-008-0609-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0609-z

Keywords

Navigation