Skip to main content
Log in

Fractal Analysis of Trabecular Bone in Knee Osteoarthritis (OA) is a More Sensitive Marker of Disease Status than Bone Mineral Density (BMD)

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine whether fractal analysis (FSA) of macroradiographs or bone mineral density (BMD) is more sensitive in detecting disease-related cancellous bone alterations in knee osteoarthritis (OA). Differences in BMD between 11 OA (6 females) and 11 non-OA reference (7 females) tibiae were compared with differences in trabecular organization measured by computerized method of fractal signature analysis (FSA) of digitized macroradiographs (×3.5 to ×5). OA knees had anatomic and radiographic evidence of medial compartment disease. FSA measured cancellous bone organization at 4 regions of interest (ROI): medial and lateral subchondral (Sc) and subarticular (Sa) sites, dual X-ray absorptiometry (DXA) measured BMD at the same ROIs. Compared to non-OA, OA tibiae had significant increased (P < 0.05) in FSA of vertical trabeculae in the medial Sa region (trabecular size range: 0.42–0.54; 0.90–1.98 mm) and significant decrease (P < 0.05) in FSA for some horizontal trabeculae in the Sc region (trabecular size range: medial side 0.12–0.18 mm; lateral side 0.12–0.24 mm). Compared to non-OA, BMD of OA tibiae was not significantly different at any ROI. BMD was not sensitive to changes in trabecular organization detected by FSA. The increase in FSA of vertical trabeculae in the medial Sa region was consistent with trabecular fenestration and thinning, which may have been detected as decreased BMD in a larger sample. For studies involving small sample sizes, quantifying changes in trabecular organization is more sensitive than BMD for detecting bone alterations in knee OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. CS Carlson RF Loeser CB Purser JF Gardin CP Jerome (1996) ArticleTitleOsteoarthritis in cynomolgus macaques III: effects of age, gender, and subchondral bone thickness on the severity of the disease J Bone Miner Res 11 1209–1217 Occurrence Handle8864894

    PubMed  Google Scholar 

  2. JC Buckland-Wright DG Macfarlane MK Jasani JA Lynch (1994) ArticleTitleQuantitative microfocal radiographic assessment of osteoarthritis of the knee from weight-bearing tunnel and semiflexed standing views J Rheumatol 21 1734–1741 Occurrence Handle7799359

    PubMed  Google Scholar 

  3. RL Karvonen PR Miller DA Nelson JL Granda F Fernandez-Madrid (1998) ArticleTitlePeriarticular osteoporosis in osteoarthritis of the knee J Rheumatol 25 2187–2194 Occurrence Handle9818663

    PubMed  Google Scholar 

  4. MD Grynpas B Alpert I Katz I Lieberman KPH Pritzker (1991) ArticleTitleSubchondral bone in osteoarthritis Calcif Tissue Int 49 20–26 Occurrence Handle1893292

    PubMed  Google Scholar 

  5. D Lajeunesse (2004) ArticleTitleThe role of bone in the treatment of osteoarthritis Osteoarthritis Cartilage 12 S34–S38 Occurrence Handle10.1016/j.joca.2003.09.013 Occurrence Handle14698639

    Article  PubMed  Google Scholar 

  6. P Bettica G Cline DJ Hart J Meyer TD Spector (2002) ArticleTitleEvidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study Arthritis Rheum 46 3178–3184 Occurrence Handle10.1002/art.10630 Occurrence Handle12483721

    Article  PubMed  Google Scholar 

  7. O Bruyere C Dardenne E Lejeune et al. (2003) ArticleTitleSubchondral tibial bone mineral density predicts future joint space narrowing at the medial femoro-tibial compartment in patients with knee osteoarthritis Bone 32 541–545 Occurrence Handle10.1016/S8756-3282(03)00059-0 Occurrence Handle12753870

    Article  PubMed  Google Scholar 

  8. DJ Hunter D Hart H Snieder R Bettica R Swaminathan TD Spector (2003) ArticleTitleEvidence of altered bone turnover, vitamin D and calcium regulation with knee osteoarthritis in female twins Rheumatology 42 1311–1316 Occurrence Handle10.1093/rheumatology/keg373 Occurrence Handle12867590

    Article  PubMed  Google Scholar 

  9. J Dequeker S Mohan RD Finkelman J Aerssens DJ Baylink (1993) ArticleTitleGeneralized osteoarthritis associated with increased insulin-like growth factor types I and II and transforming growth factor beta in cortical bone from the iliac crest: possible mechanism of increased bone density and protection against osteoporosis Arthritis Rheum 36 1702–1708 Occurrence Handle8250990

    PubMed  Google Scholar 

  10. DJ Hart C Cronin M Daniels T Worthy DV Doyle TD Spector (2002) ArticleTitleThe relationship of bone density and fracture to incident and progressive radiographic osteoarthritis of the knee: The Chingford Study Arthritis Rheum 46 92–99 Occurrence Handle10.1002/1529-0131(200201)46:1<92::AID-ART10057>3.0.CO;2-# Occurrence Handle11817613

    Article  PubMed  Google Scholar 

  11. O Beuf S Ghosh DC Newitt et al. (2002) ArticleTitleMagnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee Arthritis Rheum 46 385–393 Occurrence Handle10.1002/art.10108 Occurrence Handle11840441

    Article  PubMed  Google Scholar 

  12. S Majumdar M Kothari P Augat et al. (1998) ArticleTitleHigh-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties Bone 22 445–454 Occurrence Handle10.1016/S8756-3282(98)00030-1 Occurrence Handle9600777

    Article  PubMed  Google Scholar 

  13. P Dieppe J Cushnaghan P Young J Kirwan (1993) ArticleTitlePrediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy Ann Rheum Dis 52 557–563 Occurrence Handle8215615

    PubMed  Google Scholar 

  14. C Hulet JP Sabatier D Schlitz B Locker C Marcelli C Vielpeau (2001) ArticleTitleDual x-ray absorptiometry assessment of bone density of the proximal tibia in advanced-stage degenerative disease of the knee Revue de Chirurgie Orthopedique et Reparatrice de L’Appareil Moteur 87 50–60 Occurrence Handle11240537

    PubMed  Google Scholar 

  15. JC Buckland-Wright JA Lynch DG Macfarlane (1996) ArticleTitleFractal signature analysis measures cancellous bone organization in macroradiographs of patients with knee osteoarthritis Ann Rheum Dis 55 749–755 Occurrence Handle8984941

    PubMed  Google Scholar 

  16. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright JC (2005) Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study. Osteoarthritis Cartilage 13: 39-47

    Article  PubMed  Google Scholar 

  17. JC Lin S Grampp T Link et al. (1999) ArticleTitleFractal analysis of proximal femur radiographs: Correlation with biomechanical properties and bone mineral density Osteoporos Int 9 516–524 Occurrence Handle10624459

    PubMed  Google Scholar 

  18. S Majumdar J Lin T Link et al. (1999) ArticleTitleFractal analysis of radiographs: Assessment of trabecular bone structure and prediction of elastic modulus and strength Med Phys 26 1330–1340 Occurrence Handle10.1118/1.598628 Occurrence Handle10435535

    Article  PubMed  Google Scholar 

  19. TM Link S Majumdar W Konermann et al. (1997) ArticleTitleTexture analysis of direct magnification radiographs of vertebral specimens: correlation with bone mineral density and biomechanical properties Acad Radiol 4 167–176 Occurrence Handle9084773

    PubMed  Google Scholar 

  20. JC Buckland-Wright JA Lynch J Rymer I Fogelman (1994) ArticleTitleFractal signature analysis of macroradiographic measures of trabecular organization in lumbar vertebrae of postmenopausal women Calcif Tissue Int 54 106–112 Occurrence Handle10.1007/BF00296060 Occurrence Handle8012865

    Article  PubMed  Google Scholar 

  21. X Ouyang S Majumdar TM Link et al. (1998) ArticleTitleMorphometric texture analysis of spinal trabecular bone structure assessed using orthogonal radiographic projections Med Phys 25 2037–2045 Occurrence Handle10.1118/1.598391 Occurrence Handle9800713

    Article  PubMed  Google Scholar 

  22. P Caligiuri ML Giger MJ Favus H Jia K Doi LB Dixon (1993) ArticleTitleComputerized radiographic analysis of osteoporosis: preliminary evaluation Radiology 186 471–474 Occurrence Handle8421753

    PubMed  Google Scholar 

  23. AP Pentland (1984) ArticleTitleFractal-based descriptions of natural scenes IEEE Trans Pattern Ann Machine Intell PAMI 6 661–674

    Google Scholar 

  24. J Feder (1988) Fractals Plenum Press New York

    Google Scholar 

  25. JA Lynch JC Buckland-Wright DJ Hawkes SV Nair (1996) ArticleTitleChanges in anisotropy of modeled bone measured by simulated radiography and fractal signature analysis Trans Orthop Res Soc 21 714

    Google Scholar 

  26. S Majumdar RS Weinstein RR Prasad HK Genant (1993) ArticleTitleThe fractal dimension of trabecular bone: a measure of trabecular structure Calcif Tissue Int 52 168

    Google Scholar 

  27. L Pothuaud E Lespessailles R Harba et al. (1998) ArticleTitleFractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis Osteoporos Int 8 618–625 Occurrence Handle10.1007/s001980050108 Occurrence Handle10326070

    Article  PubMed  Google Scholar 

  28. JA Lynch DJ Hawkes JC Buckland-Wright (1991) ArticleTitleAnalysis of texture in macroradiographs of osteoarthritic knees using the fractal signature Phys Med Biol 36 709–722 Occurrence Handle10.1088/0031-9155/36/6/001 Occurrence Handle1871209

    Article  PubMed  Google Scholar 

  29. JC Buckland-Wright (1989) ArticleTitleA new high-definition microfocal X-ray unit Br J Radiol 62 201–208 Occurrence Handle2702377

    PubMed  Google Scholar 

  30. JC Buckland-Wright CR Bradshaw (1989) ArticleTitleClinical applications of high-definition microfocal radiography Br J Radiol 62 209–217 Occurrence Handle2539218

    PubMed  Google Scholar 

  31. Buckland-Wright C (1995) Protocols for precise radio-anatomical positioning of the tibiofemoral and patellofemoral compartments of the knee. Osteoarthritis Cartilage (suppl)A:71–80

    Google Scholar 

  32. JH Kellgren JS Lawrence (1957) ArticleTitleRadiological assessment of osteoarthrosis Ann Rheum Dis 16 494–501 Occurrence Handle13498604

    PubMed  Google Scholar 

  33. D Resnick G Niwayama (1995) Degenerative disease in extraspinal locations: diagnosis of bone and joint disorders EditionNumber 2 WB Saunders Philadelphia 1263–1479

    Google Scholar 

  34. JA Lynch DJ Hawkes JC Buckland-Wright (1991) ArticleTitleA robust and accurate method for calculating the fractal signature of texture in macroradiographs of osteoarthritic knees Med Informatics 16 241–251

    Google Scholar 

  35. UE Ruttimann RL Webber JB Hazelrig (1992) ArticleTitleFractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis Oral Surg Oral Med Oral Pathol 74 98–110 Occurrence Handle1508517

    PubMed  Google Scholar 

  36. T Lundahl WS Ohley SM Kay R Siffert (1986) ArticleTitleFractional Brownian-motion: a maximum likelihood estimator and its application to imaging texture IEEE Trans Med Imaging 5 152–161

    Google Scholar 

  37. L Kamibayashi UF Wyss DV Cooke B Zee (1995) ArticleTitleTrabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis Bone 17 27–35 Occurrence Handle10.1016/8756-3282(95)00137-3 Occurrence Handle7577155

    Article  PubMed  Google Scholar 

  38. Ding M, Odgaard A, Danielsen CC, Hvid I (2001) Deterioration in the quality of tibial cancellous bone in early stage human osteoarthritis. 47th Annual Meeting, Orthopaedic Research Society

  39. D Bobinac J Spanjol S Zoricic I Maric (2003) ArticleTitleChanges in articular cartilage and subchondral bone bistomorphometry in osteoarthritic knee joints in humans Bone 32 284–290 Occurrence Handle10.1016/S8756-3282(02)00982-1 Occurrence Handle12667556

    Article  PubMed  Google Scholar 

  40. DB Burr MB Schaffler (1997) ArticleTitleThe involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence Microsc Res Tech 37 343–357 Occurrence Handle10.1002/(SICI)1097-0029(19970515)37:4<343::AID-JEMT9>3.0.CO;2-L Occurrence Handle9185156

    Article  PubMed  Google Scholar 

  41. C Buckland-Wright (2004) ArticleTitleSubchondral bone changes in hand and knee osteoarthritis detected by radiography Osteoarthritis Cartilage 12 S10–S19 Occurrence Handle10.1016/j.joca.2003.09.007 Occurrence Handle14698636

    Article  PubMed  Google Scholar 

  42. C Hulet JP Sabatier D Souquet et al. (2002) ArticleTitleDistribution of bone mineral density at the proximal tibia in knee osteoarthritis Calcif Tissue Int 71 315–322 Occurrence Handle10.1007/s00223-001-2112-9 Occurrence Handle12202957

    Article  PubMed  Google Scholar 

  43. DK Dedrick SA Goldstein KD Brandt et al. (1993) ArticleTitleA longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months Arthritis Rheum 36 1460–1467 Occurrence Handle8216405

    PubMed  Google Scholar 

  44. DK Dedrick R Goulet L Huston SA Goldstein GG Bole (1991) ArticleTitleEarly bone changes in experimental osteoarthritis using microscopic computed tomography J Rheumatol 18 44–45 Occurrence Handle1827158

    PubMed  Google Scholar 

  45. KD Brandt SL Myers D Burr M Albrecht (1991) ArticleTitleOsteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament Arthritis Rheum 34 1560–1570 Occurrence Handle1747141

    PubMed  Google Scholar 

  46. PC Pastoureau AC Chornel J Bonnet (1999) ArticleTitleEvidence of early subchondral bone changes in the meniscectomized guinea pig. A densitometric study using dual-energy X-ray absorptiometry subregional analysis Osteoarthritis Cartilage 7 466–473 Occurrence Handle10.1053/joca.1999.0241 Occurrence Handle10489319

    Article  PubMed  Google Scholar 

  47. K Messner A Fahlgren I Ross B Andersson (2000) ArticleTitleSimultaneous changes in bone mineral density and articular cartilage in a rabbit meniscectomy model of knee osteoarthrosis Osteoarthritis Cartilage 8 197–206 Occurrence Handle10.1053/joca.1999.0290 Occurrence Handle10806047

    Article  PubMed  Google Scholar 

  48. CD Papaloucas P Earnshaw C Tonkin JC Buckland-Wright (2004) ArticleTitleQuantitative radiographic assessment of cancellous bone changes in the proximal tibia after total knee arthroplasty: a 3-year follow-up study Calcif Tissue Int 74 429–436 Occurrence Handle10.1007/s00223-003-0109-2 Occurrence Handle14961214

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study were supported by a grant from Procter and Gamble Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Buckland-Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messent, E.A., Buckland-Wright, J.C. & Blake, G.M. Fractal Analysis of Trabecular Bone in Knee Osteoarthritis (OA) is a More Sensitive Marker of Disease Status than Bone Mineral Density (BMD). Calcif Tissue Int 76, 419–425 (2005). https://doi.org/10.1007/s00223-004-0160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-004-0160-7

Keywords

Navigation