Skip to main content

Advertisement

Log in

Optical coherence tomography—current technology and applications in clinical and biomedical research

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal diseases, and OCT is becoming an important instrument for clinical cardiology. New applications are emerging in various medical fields, such as early-stage cancer detection, surgical guidance, and the early diagnosis of musculoskeletal diseases. OCT has also proven its value as a tool for developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Note that, throughout the literature, there is no uniform terminology for OCT embodiments where the depth scan is performed in the frequency domain. The terms “frequency domain OCT” and “spectral domain OCT” may be interchanged, and “Fourier domain OCT” may be used for either one. “Swept source OCT” is also called “optical frequency domain imaging,” while spectrometer-based OCT was formerly referred to as “spectral radar.”

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  Google Scholar 

  2. Smolka G (2010) Optical coherence tomography 2010: technology, applications, and markets (Market Report OM-51). Strategies Unlimited (PennWell Corporation), Mountain View

  3. Swanson E (2010) LightLab Imaging announces FDA clearance of C7-XR™ coronary OCT products in the United States. Opt Coher Tomogr News 5/5/2010. http://www.octnews.org/articles/2008632/lightlab-imaging-announces-fda-clearance-of-c7-xrt/, accessed 13 Nov 2010

  4. Volcano Corp. (2010) Volcano Corporation announces receipt of CE mark for its OCT imaging system and catheter. Volcano Corp., San Diego http://ir.volcanocorp.com/releasedetail.cfm?ReleaseID=434187, accessed 17 Mar 2011

  5. Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, Ranka JK, Windeler RS (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber. Opt Lett 26(9):608–610

    Article  CAS  Google Scholar 

  6. Považay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher AF, Drexler W, Apolonski A, Wadsworth WJ, Knight JC, Russell PSJ, Vetterlein M, Scherzer E (2002) Submicrometer axial resolution optical coherence tomography. Opt Lett 27(20):1800–1802

    Article  Google Scholar 

  7. Drexler W (2004) Ultrahigh-resolution optical coherence tomography. J Biomed Opt 9(1):47–74

    Article  Google Scholar 

  8. Inoué S (2006) Chap 1. In: Handbook of biological confocal microscopy, 3rd edn. Springer, Berlin, ISBN: 978-0-387-25921-5

  9. Stifter D (2007) Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography. Appl Phys B 88(3):337–357

    Google Scholar 

  10. Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography—principles and applications. Rep Prog Phys 66:239–303

    Google Scholar 

  11. Fercher AF (2010) Optical coherence tomography: development, principles, applications. Z Med Phys 20(4):251–276

    Google Scholar 

  12. Brezinski ME (2006) Optical coherence tomography—principles and applications. Academic, New York

  13. Drexler W, Fujimoto JG (eds) (2008) Optical coherence tomography—technology and applications. Springer, Berlin

  14. Takada K, Yokohama I, Chida K, Noda J (1987) New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl Opt 26(9):1603–1606

    Article  CAS  Google Scholar 

  15. Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13(3):186–188

    Article  CAS  Google Scholar 

  16. Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 117(1–2):43–48

    Article  CAS  Google Scholar 

  17. Bail MA, Häusler G, Herrmann JM, Lindner MW, Ringler R (1996) Optical coherence tomography with the “spectral radar:” fast optical analysis in volume scatterers by short-coherence interferometry. Proc SPIE 2925:298–303

    Google Scholar 

  18. Häusler G, Lindner MW (1998) Coherence radar and spectral radar—new tools for dermatological diagnosis. J Biomed Opt 3(1):21–31

    Google Scholar 

  19. Haberland U, Rütten W, Blazek V, Schmitt HJ (1995) Investigation of highly scattering media using near-infrared continuous wave tunable semi-conductor laser. Proc SPIE 2389:503–512

    Article  Google Scholar 

  20. Chinn SR, Swanson EA, Fujimoto JG (1997) Optical coherence tomography using a frequency-tunable optical source. Opt Lett 22(5):340–342

    Article  CAS  Google Scholar 

  21. Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG (1997) Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:Forsterite laser. Opt Lett 22(22):1704–1706

    Google Scholar 

  22. Eickhoff W, Ulrich R (1981) Optical frequency domain reflectometry in single-mode fiber. Appl Phys Lett 39:693–695

    Article  CAS  Google Scholar 

  23. Uttam D, Culshaw B (1985) Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique. J Lightwave Technol 3(5):971–977

    Article  Google Scholar 

  24. Yun S-H, Boudoux C, Tearney GJ, Bouma BE (2003) High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt Lett 28(20):1981–1983

    Article  CAS  Google Scholar 

  25. Choma MA, Hsu K, Izatt JA (2005) Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J Biomed Opt 10(4):044009

    Article  Google Scholar 

  26. Huber R, Wojtkowski M, Taira K, Fujimoto JG, Hsu K (2005) Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt Express 13(9):3513–3528

    Article  CAS  Google Scholar 

  27. Huber R, Wojtkowski M, Fujimoto JG (2006) Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt Express 14(8):3225–3237

    Article  CAS  Google Scholar 

  28. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R (2010) Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 Gvoxels per second. Opt Express 18(14):14685–14704

    Article  Google Scholar 

  29. Liu B, Brezinski ME (2007) Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J Biomed Opt 12(4):044007

    Google Scholar 

  30. Leitgeb RA, Hitzenberger CK, Fercher AF, Bajraszewski T (2003) Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Opt Lett 28(22):2201–2203

    Article  Google Scholar 

  31. Sarunic M, Choma MA, Yang C, Izatt JA (2005) Instantaneous complex conjugate resolved spectral domain and swept-source oct using 3×3 fiber couplers. Opt Express 13(3):957–967

    Article  Google Scholar 

  32. Zhang J, Nelson JS, Chen Z (2005) Removal of a mirror image and enhancement of the signal-to-noise ratio in fourier-domain optical coherence tomography using an electro-optic phase modulator. Opt Lett 30(2):147–149

    Article  Google Scholar 

  33. Yasuno Y, Makita S, Endo T, Aoki G, Itoh M, Yatagai T (2006) Simultaneous b-m-mode scanning method for real-time full-range Fourier domain optical coherence tomography. Appl Opt 45(8):1861–1865

    Google Scholar 

  34. An L, Wang RK (2007) Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography. Opt Lett 32(23):3423–3425

    Google Scholar 

  35. Motaghian Nezam SMR, Vakoc BJ, Desjardins AE, Tearney GJ, Bouma BE (2007) Increased ranging depth in optical frequency domain imaging by frequency encoding. Opt Lett 32(19):2768–2770

    Article  CAS  Google Scholar 

  36. Hofer B, Považay B, Hermann B, Unterhuber A, Matz G, Drexler W (2009) Dispersion encoded full range frequency domain optical coherence tomography. Opt Express 17(1):7–24

    Article  CAS  Google Scholar 

  37. Bouma BE, Yun S-H, Vakoc BJ, Suter MJ, Tearney GJ (2009) Fourier-domain optical coherence tomography: recent advances toward clinical utility. Curr Opin Biotech 20(1):111–118

    Article  CAS  Google Scholar 

  38. Huber R, Adler DC, Srinivasan VJ, Fujimoto JG (2007) Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt Lett 32(14):2049–2051

    Article  CAS  Google Scholar 

  39. Marschall S, Klein T, Wieser W, Biedermann BR, Hsu K, Hansen KP, Sumpf B, Hasler K-H, Erbert G, Jensen OB, Pedersen C, Huber R, Andersen PE (2010) Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier. Opt Express 18(15):15820–15831

    Article  CAS  Google Scholar 

  40. Holmes J, Hattersley S, Stone N, Bazant-Hegemark F, Barr H (2008) Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications. Proc SPIE 6847:68470O1–68470O9

    Google Scholar 

  41. Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG (1994) Optical coherence microscopy in scattering media. Opt Lett 19(8):590–592

    Article  CAS  Google Scholar 

  42. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG (1997) In vivo endoscopic optical biopsy with optical coherence tomography. Science 276(5321):2037–2039

    Article  CAS  Google Scholar 

  43. Li X, Chudoba C, Ko T, Pitris C, Fujimoto JG (2000) Imaging needle for optical coherence tomography. Opt Lett 25(20):1520–1522

    Article  CAS  Google Scholar 

  44. Yun S-H, Tearney GJ, de Boer JF, Bouma EB (2004) Motion artifacts in optical coherence tomography with frequency-domain ranging. Opt Express 12(13):2977–2998

    Article  CAS  Google Scholar 

  45. Bizheva K, Pflug R, Hermann B, Považay B, Sattmann H, Qiu P, Angers E, Reitsamer H, Popov S, Taylor JR, Unterhuber A, Ahnelt P, Drexler W (2006) Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci USA 103:13

    Google Scholar 

  46. Leitgeb RA, Schmoll T, Kolbitsch C (2009) Dynamic retinal optical coherence microscopy without adaptive optics. Proc SPIE 7372:737208

    Article  Google Scholar 

  47. Schmitt JM, Knüttel A, Yadlowsky M, Eckhaus MA (1994) Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys Med Biol 39(10):1705–1720

    Article  CAS  Google Scholar 

  48. Hitzenberger CK, Baumgartner A, Drexler W, Fercher AF (1999) Dispersion effects in partial coherence interferometry: implications for intraocular ranging. J Biomed Opt 4(1):144–151

    Article  Google Scholar 

  49. de Boer JF, Saxer CE, Nelson JS (2001) Stable carrier generation and phase-resolved digital data processing in optical coherence tomography. Appl Opt 40(31):5787–5790

    Google Scholar 

  50. Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, Southern JF, Fujimoto JG (1996) Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology. Circulation 93(6):1206–1213

    CAS  Google Scholar 

  51. Parrish JA (1981) New concepts in therapeutic photomedicine; photochemistry, optical targeting and the therapeutic window. J Invest Dermatol 77(1):45–50

    Article  CAS  Google Scholar 

  52. Sharma U, Chang EW, Yun SH (2008) Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth. Opt Express 16(24):19712–19723

    Article  CAS  Google Scholar 

  53. Považay B, Bizheva K, Hermann B, Unterhuber A, Sattmann H, Fercher AF, Drexler W, Schubert C, Ahnelt PK, Mei M, Holzwarth R, Wadsworth WJ, Knight JC, Russel PSJ (2003) Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. Opt Express 11(17):1980–1986

    Article  Google Scholar 

  54. Wang Y, Nelson JS, Chen Z, Reiser BJ, Chuck RS, Windeler RS (2003) Optimal wavelength for ultrahigh-resolution optical coherence tomography. Opt Express 11(12):1411–1417

    Article  Google Scholar 

  55. Schmitt JM, Xiang SH, Yung KM (1999) Speckle in optical coherence tomography. J Biomed Opt 4(1):95–105

    Article  Google Scholar 

  56. Gossage KW, Tkaczyk TS, Rodriguez JJ, Barton JK (2003) Texture analysis of optical coherence tomography images: feasibility for tissue classification. J Biomed Opt 8(3):570–575

    Article  Google Scholar 

  57. Hillman TR, Adie SG, Seemann V, Armstrong JJ, Jacques SL, Sampson DD (2006) Correlation of static speckle with sample properties in optical coherence tomography. Opt Lett 31(2):190–192

    Article  Google Scholar 

  58. Schmitt JM (1997) Array detection for speckle reduction in optical coherence microscopy. Phys Med Biol 42(7):1427–1439

    Article  CAS  Google Scholar 

  59. Sander B, Larsen M, Thrane L, Hougaard JL, Jørgensen TM (2005) Enhanced optical coherence tomography imaging by multiple scan averaging. Brit J Ophthalmol 89(2):207–212

    Article  CAS  Google Scholar 

  60. Jørgensen TM, Thomadsen J, Christensen U, Soliman W, Sander B (2007) Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples. J Biomed Opt 12(4):041208

    Article  Google Scholar 

  61. Pircher M, Götzinger E, Leitgeb R, Fercher AF, Hitzenberger CK (2003) Speckle reduction in optical coherence tomography by frequency compounding. J Biomed Opt 8(3):565–569

    Article  Google Scholar 

  62. Kulkarni MD, Thomas CW, Izatt JA (1997) Image enhancement in optical coherence tomography using deconvolution. Electron Lett 33(16):1365–1367

    Article  Google Scholar 

  63. Schmitt JM (1998) Restoration of optical coherence images of living tissue using the CLEAN algorithm. J Biomed Opt 3(1):66–75

    Article  Google Scholar 

  64. Xiang SH, Zhou L, Schmitt JM (1998) Speckle noise reduction for optical coherence tomography. Proc SPIE 3196(1):79–88

    Article  Google Scholar 

  65. Rogowska J, Brezinski ME (2000) Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging. IEEE T Med Imaging 19(12):1261–1266

    Article  CAS  Google Scholar 

  66. Wang RK (2005) Reduction of speckle noise for optical coherence tomography by the use of nonlinear anisotropic diffusion. Proc SPIE 5690(1):380–385

    Article  Google Scholar 

  67. Hee MR, Huang D, Swanson EA, Fujimoto JG (1992) Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J Opt Soc Am B 9(6):903–908

    Article  Google Scholar 

  68. de Boer JF, Milner TE, van Gemert MJC, Nelson JS (1997) Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 22(12):934–936

    Article  Google Scholar 

  69. Baumgartner A, Dichtl S, Hitzenberger CK, Sattmann H, Robl B, Moritz A, Fercher AF, Sperr W (2000) Polarization-sensitive optical coherence tomography of dental structures. Caries Res 34(1):59–69

    Article  CAS  Google Scholar 

  70. Kemp N, Zaatari H, Park J, Rylander HG III, Milner T (2005) Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT). Opt Express 13(12):4611–4628

    Article  Google Scholar 

  71. Pircher M, Götzinger E, Leitgeb R, Sattmann H, Findl O, Hitzenberger C (2004) Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Opt Express 12(24):5940–5951

    Article  Google Scholar 

  72. de Boer JF, Milner TE, Nelson JS (1999) Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Opt Lett 24(5):300–302

    Article  Google Scholar 

  73. Yao G, Wang LV (1999) Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Opt Lett 24(8):537–539

    Article  CAS  Google Scholar 

  74. Jiao S, Wang LV (2002) Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. J Biomed Opt 7(3):350–358

    Article  Google Scholar 

  75. Hitzenberger KC, Götzinger E, Sticker M, Pircher M, Fercher AF (2001) Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt Express 9(13):780–790

    Article  CAS  Google Scholar 

  76. Götzinger E, Baumann B, Pircher M, Hitzenberger CK (2009) Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography. Opt Express 17(25):22704–22717

    Article  CAS  Google Scholar 

  77. Yasuno Y, Makita S, Sutoh Y, Itoh M, Yatagai T (2002) Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. Opt Lett 27(20):1803–1805

    Article  CAS  Google Scholar 

  78. Oh WY, Yun SH, Vakoc BJ, Shishkov M, Desjardins AE, Park BH, de Boer JF, Tearney GJ, Bouma BE (2008) High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Opt Express 16(2):1096–1103

    Article  CAS  Google Scholar 

  79. Yamanari M, Makita S, Yasuno Y (2008) Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Opt Express 16(8):5892–5906

    Article  Google Scholar 

  80. Saxer CE, de Boer JF, Park BH, Zhao Y, Chen Z, Nelson JS (2000) High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin. Opt Lett 25(18):1355–1357

    Article  CAS  Google Scholar 

  81. Roth JE, Kozak JA, Yazdanfar S, Rollins AM, Izatt JA (2001) Simplified method for polarization-sensitive optical coherence tomography. Opt Lett 26(14):1069–1071

    Article  CAS  Google Scholar 

  82. Davé DP, Akkin T, Milner TE (2003) Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence. Opt Lett 28(19):1775–1777

    Article  Google Scholar 

  83. Liu B, Harman M, Giattina S, Stamper DL, Demakis C, Chilek M, Raby S, Brezinski ME (2006) Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography. Appl Opt 45(18):4464–4479

    Article  Google Scholar 

  84. Giattina SD, Courtney BK, Herz PR, Harman M, Shortkroff S, Stamper DL, Liu B, Fujimoto JG, Brezinski ME (2006) Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT). Int J Cardiol 107(3):400–409

    Article  Google Scholar 

  85. Zheng K, Rashidifard C, Liu B, Brezinski M (2009) Comparison of artifact generation with catheter bending using different PS-OCT approaches. Rep Med Imaging 2:49–54

    Google Scholar 

  86. Izatt JA, Kulkarni MD, Yazdanfar S, Barton JK, Welch AJ (1997) In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett 22(18):1439–1441

    Article  CAS  Google Scholar 

  87. Chen Z, Milner TE, Davé D, Nelson JS (1997) Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett 22(1):64–66

    Article  CAS  Google Scholar 

  88. Zhao Y, Chen Z, Saxer C, Xiang S, de Boer JF, Nelson JS (2000) Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett 25(2):114–116

    Article  CAS  Google Scholar 

  89. Leitgeb R, Schmetterer L, Wojtkowski M, Hitzenberger CK, Sticker M, Fercher AF (2002) Flow velocity measurements by frequency domain short coherence interferometry. Proc SPIE 4619:16–21

    Article  Google Scholar 

  90. Vakoc B, Yun S, de Boer J, Tearney G, Bouma B (2005) Phase-resolved optical frequency domain imaging. Opt Express 13(14):5483–5493

    Article  CAS  Google Scholar 

  91. Adler DC, Huber R, Fujimoto JG (2007) Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers. Opt Lett 32(6):626–628

    Article  Google Scholar 

  92. Yang C, Wax A, Hahn MS, Badizadegan K, Dasari RR, Feld MS (2001) Phase-referenced interferometer with subwave-length and subhertz sensitivity applied to the study of cell membrane dynamics. Opt Lett 26(16):1271–1273

    Article  CAS  Google Scholar 

  93. Sticker M, Pircher M, Götzinger E, Sattmann H, Fercher AF, Hitzenberger CK (2002) En face imaging of single cell layers by differential phase-contrast optical coherence microscopy. Opt Lett 27(13):1126–1128

    Article  Google Scholar 

  94. Hitzenberger CK, Fercher AF (1999) Differential phase contrast in optical coherence tomography. Opt Lett 24(9):622–624

    Article  CAS  Google Scholar 

  95. Davé DP, Milner TE (2000) Optical low-coherence reflectometer for differential phase measurement. Opt Lett 25(4):227–229

    Article  Google Scholar 

  96. Telenkov SA, Davé DP, Sethuraman S, Akkin T, Milner TE (2004) Differential phase optical coherence probe for depth-resolved detecion of photothermal response in tissue. Phys Med Biol 49(1):111–119

    Article  Google Scholar 

  97. Iwai H, Fang-Yen C, Popescu G, Wax A, Badizadegan K, Dasari RR, Feld MS (2004) Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. Opt Lett 29(20):2399–2401

    Article  Google Scholar 

  98. Choma MA, Ellerbee AK, Yang C, Creazzo TL, Izatt JA (2005) Spectral-domain phase microscopy. Opt Lett 30(10):1162–1164

    Article  Google Scholar 

  99. Joo C, Akkin T, Cense B, Park BH, de Boer JF (2005) Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Opt Lett 30(16):2131–2133

    Article  Google Scholar 

  100. Schmitt JM (1998) OCT elastography: imaging microscopic deformation and strain of tissue. Opt Express 3(6):199–211

    Article  CAS  Google Scholar 

  101. Chan R, Chau A, Karl W, Nadkarni S, Khalil A, Iftimia N, Shishkov M, Tearney G, Kaazempur-Mofrad M, Bouma B (2004) OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Opt Express 12(19):4558–4572

    Article  CAS  Google Scholar 

  102. Rogowska J, Patel N, Plummer S, Brezinski ME (2006) Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties. Br J Radiol 79(945):707–711

    Article  CAS  Google Scholar 

  103. van Soest G, Mastik F, de Jong N, van der Steen AFW (2007) Robust intravascular optical coherence elastography by line correlations. Phys Med Biol 52(9):2445

    Article  Google Scholar 

  104. Wang RK, Ma Z, Kirkpatrick SJ (2006) Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue. Appl Phys Lett 89(14):144103

    Article  CAS  Google Scholar 

  105. Kirkpatrick SJ, Wang RK, Duncan DD (2006) OCT-based elastography for large and small deformations. Opt Express 14(24):11585–11597

    Article  Google Scholar 

  106. Liang X, Oldenburg AL, Crecea V, Chaney EJ, Boppart SA (2008) Optical micro-scale mapping of dynamic biomechanical tissue properties. Opt Express 16(15):11052–11065

    Article  Google Scholar 

  107. Adie SG, Kennedy BF, Armstrong JJ, Alexandrov SA, Sampson DD (2009) Audio frequency in vivo optical coherence elastography. Phys Med Biol 54(10):3129–3139

    Article  Google Scholar 

  108. Adie SG, Liang X, Kennedy BF, John R, Sampson DD, Boppart SA (2010) Spectroscopic optical coherence elastography. Opt Express 18(25):25519–25534

    Article  CAS  Google Scholar 

  109. Kennedy BF, Hillman TR, McLaughlin RA, Quirk BC, Sampson DD (2009) In vivo dynamic optical coherence elastography using a ring actuator. Opt Express 17(24):21762–21772

    Article  CAS  Google Scholar 

  110. Liang X, Boppart SA (2010) Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE T Biomed Eng 57(4):953–959

    Article  Google Scholar 

  111. Yang C (2005) Molecular contrast optical coherence tomography: a review. Photochem Photobiol 81(2):215–237

    Article  CAS  Google Scholar 

  112. Boppart SA, Oldenburg AL, Xu C, Marks DL (2005) Optical probes and techniques for molecular contrast enhancement in coherence imaging. J Biomed Opt 10(4):041208

    Article  Google Scholar 

  113. Morgner U, Drexler W, Kärtner FX, Li XD, Pitris C, Ippen EP, Fujimoto JG (2000) Spectroscopic optical coherence tomography. Opt Lett 25(2):111–113

    Article  CAS  Google Scholar 

  114. Faber DJ, Mik EG, Aalders MCG, van Leeuwen TG (2003) Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography. Opt Lett 28(16):1436–1438

    Article  CAS  Google Scholar 

  115. Yang C, McGuckin LEL, Simon JD, Choma MA, Applegate BE, Izatt JA (2004) Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent. Opt Lett 29(17):2016–2018

    Article  CAS  Google Scholar 

  116. Xu C, Marks D, Do M, Boppart S (2004) Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm. Opt Express 12(20):4790–4803

    Article  CAS  Google Scholar 

  117. Schmitt JM, Xiang SH, Yung KM (1998) Differential absorption imaging with optical coherence tomography. J Opt Soc Am A 15(9):2288–2296

    Article  Google Scholar 

  118. Lu C-W, Lee C-K, Tsai M-T, Wang Y-M, Yang CC (2008) Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography. Opt Lett 33(5):416–418

    Article  Google Scholar 

  119. Vinegoni C, Bredfeldt J, Marks D, Boppart S (2004) Nonlinear optical contrast enhancement for optical coherence tomography. Opt Express 12(2):331–341

    Article  Google Scholar 

  120. Jiang Y, Tomov I, Wang Y, Chen Z (2004) Second-harmonic optical coherence tomography. Opt Lett 29(10):1090–1092

    Article  Google Scholar 

  121. Applegate BE, Yang C, Rollins AM, Izatt JA (2004) Polarization-resolved second-harmonic-generation optical coherence tomography in collagen. Opt Lett 29(19):2252–2254

    Article  Google Scholar 

  122. Bredfeldt JS, Vinegoni C, Marks DL, Boppart SA (2005) Molecularly sensitive optical coherence tomography. Opt Lett 30(5):495–497

    Article  CAS  Google Scholar 

  123. Støren T, Simonsen A, Løkberg OJ, Lindmo T, Svaasand LO, Røyset A (2003) Measurement of dye diffusion in agar gel by use of low-coherence interferometry. Opt Lett 28(14):1215–1217

    Article  Google Scholar 

  124. Divakar Rao K, Choma MA, Yazdanfar S, Rollins AM, Izatt JA (2003) Molecular contrast in optical coherence tomography by use of a pump probe technique. Opt Lett 28(5):340–342

    Google Scholar 

  125. Barton JK, Hoying JB, Sullivan CJ (2002) Use of microbubbles as an optical coherence tomography contrast agent. Acad Radiol 9(Suppl 1):52–55

    Google Scholar 

  126. Lee TM, Oldenburg AL, Sitafalwalla S, Marks DL, Luo W, Toublan FJ-J, Suslick KS, Boppart SA (2003) Engineered microsphere contrast agents for optical coherence tomography. Opt Lett 28(17):1546–1548

    Article  CAS  Google Scholar 

  127. Barton JK, Halas NJ, West JL, Drezek RA (2004) Nanoshells as an optical coherence tomography contrast agent. Proc SPIE 5316:99–106

    Article  Google Scholar 

  128. Troutman TS, Barton JK, Romanowski M (2007) Optical coherence tomography with plasmon resonant nanorods of gold. Opt Lett 32(11):1438–1440

    Article  Google Scholar 

  129. Winkler AM, Rice PFS, Drezek RA, Barton JK (2010) Quantitative tool for rapid disease mapping using optical coherence tomography images of azoxymethane-treated mouse colon. J Biomed Opt 15(4):041512

    Article  CAS  Google Scholar 

  130. Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Hee MR, Fujimoto JG (1995) Determination of the refractive index of highly scattering human tissue by optical coherence tomography. Opt Lett 20(21):2258–2260

    Article  CAS  Google Scholar 

  131. Knüttel A, Boehlau-Godau M (2000) Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography. J Biomed Opt 5(1):83–92

    Article  Google Scholar 

  132. Thrane L, Yura HT, Andersen PE (2000) Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle. J Opt Soc Am A 17(3):484–490

    Google Scholar 

  133. Levitz D, Thrane L, Frosz M, Andersen P, Andersen C, Andersson-Engels S, Valanciunaite J, Swartling J, Hansen P (2004) Determination of optical scattering properties of highly-scattering media in optical coherence tomography images. Opt Express 12(2):249–259

    Article  Google Scholar 

  134. Turchin IV, Sergeeva EA, Dolin LS, Kamensky VA, Shakhova NM, Richards-Kortum R (2005) Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies. J Biomed Opt 10(6):064024

    Article  Google Scholar 

  135. van der Meer FJ, Faber DJ, Sassoon DMB, Aalders MC, Pasterkamp G, van Leeuwen TG (2005) Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE T Med Imaging 24(10):1369–1376

    Article  Google Scholar 

  136. Sowa M, Popescu D, Werner J, Hewko M, Ko A, Payette J, Dong C, Cleghorn B, Choo-Smith L-P (2007) Precision of Raman depolarization and optical attenuation measurements of sound tooth enamel. Anal Bioanal Chem 387:1613–1619. doi:10.1007/s00216-006-0856-9

    Article  CAS  Google Scholar 

  137. van Soest G, Goderie T, Regar E, Koljenovic S, van Leenders GLJH, Gonzalo N, van Noorden S, Okamura T, Bouma BE, Tearney GJ, Oosterhuis JW, Serruys PW, van der Steen AFW (2010) Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J Biomed Opt 15(1):011105

    Article  Google Scholar 

  138. McLaughlin RA, Scolaro L, Robbins P, Saunders C, Jacques SL, Sampson DD (2010) Parametric imaging of cancer with optical coherence tomography. J Biomed Opt 15(4):046029

    Article  Google Scholar 

  139. Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H (1993) In vivo optical coherence tomography. Am J Ophthalmol 116(1):113–114

    CAS  Google Scholar 

  140. Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Puliafito CA, Fujimoto JG (1993) In vivo retinal imaging by optical coherence tomography. Opt Lett 18(21):1864–1866

    Article  CAS  Google Scholar 

  141. Izatt JA, Hee MR, Huang D, Fujimoto JG, Swanson EA, Lin CP, Shuman JS, Puliafito CA (1993) Ophthalmic diagnostics using optical coherence tomography. Proc SPIE 1877:136–144

    Article  Google Scholar 

  142. Tanno N, Kishi S (1999) Optical coherence tomographic imaging and clinical diagnosis. Med Imaging Technol 17(1):3–10

    Google Scholar 

  143. Larsson J, Holm K, Lövestam-Adrian M (2006) The presence of an operculum verified by optical coherence tomography and other prognostic factors in macular hole surgery. Acta Ophthalmol Scan 84(3):301–304

    Article  Google Scholar 

  144. Kaiser PK, Blodi BA, Shapiro H, Acharya NR (2007) Angiographic and optical coherence tomographic results of the marina study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology 114(10):1868–1875

    Article  Google Scholar 

  145. Tan O, Li G, Ake Tzu-Hui L, Varma R, Huang D (2008) Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 115(6):949–956

    Article  Google Scholar 

  146. Soliman W, Sander B, Soliman KAE-N, Yehya S, Rahamn MSA, Larsen M (2008) The predictive value of optical coherence tomography after grid laser photocoagulation for diffuse diabetic macular oedema. Acta Ophthalmol 86(3):284–291

    Google Scholar 

  147. Gaucher D, Sebah C, Erginay A, Haouchine B, Tadayoni R, Gaudric A, Massin P (2008) Optical coherence tomography features during the evolution of serous retinal detachment in patients with diabetic macular edema. Am J Ophthalmol 145(2):289–296

    Article  Google Scholar 

  148. van Velthoven MEJ, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD (2007) Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res 26(1):57–77

    Article  Google Scholar 

  149. Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 27(1):45–88

    Article  Google Scholar 

  150. Medical News Today (2010) Carl Zeiss Meditec delivers key technological advances in optical coherence tomography. Medical News Today 7/4/2008. http://www.medicalnewstoday.com/articles/103013.php, accessed 20 Nov 2010

  151. Chang TS, Bressler NM, Fine JT, Dolan CW, Ward J, Klesert TR, Marina Study Group (2007) Improved vision-related function after ranibizumab treatment of neovascular age-related macular degeneration—results of a randomized clinical trial. Arch Ophthalmol 125(11):1460–1469

    Google Scholar 

  152. Brown DM, Regillo CD (2007) Anti-VEGF agents in the treatment of neovascular age-related macular degeneration: applying clinical trial results to the treatment of everyday patients. Am J Ophthalmol 144(4):627–637e2

    Article  CAS  Google Scholar 

  153. Jeppesen P, Knudsen ST, Poulsen PL, Mogensen CE, Schmitz O, Bek T (2007) Response of retinal arteriole diameter to increased blood pressure during acute hyperglycaemia. Acta Ophthalmol Scan 85(3):280–286

    Google Scholar 

  154. Bolz M, Ritter M, Schneider M, Simader C, Scholda C, Schmidt-Erfurth U (2009) A systematic correlation of angiography and high-resolution optical coherence tomography in diabetic macular edema. Ophthalmology 116(1):66–72

    Article  Google Scholar 

  155. Gyatsho J, Kaushik S, Gupta A, Pandav S, Ram J (2008) Retinal nerve fiber layer thickness in normal, ocular hypertensive, and glaucomatous Indian eyes: an optical coherence tomography study. J Glaucoma 17(2):122–127

    Article  Google Scholar 

  156. Hougaard JL, Heijl A, Bengtsson B (2007) Glaucoma detection using different stratus optical coherence tomography protocols. Acta Ophthalmol Scan 85(3):251–256

    Google Scholar 

  157. Li S, Wang X, Li S, Wu G, Wang N (2010) Evaluation of optic nerve head and retinal nerve fiber layer in early and advance glaucoma using frequency-domain optical coherence tomography. Graef Arch Clin Exp 248(3):429–434

    Article  Google Scholar 

  158. Leung CKS, Lam S, Weinreb RN, Liu S, Ye C, Liu L, He J, Lai GWK, Li T, Lam DSC (2010) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 117(9):1684–1691

    Article  Google Scholar 

  159. Kovacs I, Ferencz M, Nemes J, Somfai G, Salacz G, Recsan Z (2007) Intraocular lens power calculation for combined cataract surgery, vitrectomy and peeling of epiretinal membranes for macular oedema. Acta Ophthalmol Scan 85(1):88–91

    Google Scholar 

  160. Doors M, Berendschot TTJM, de Brabander J, Webers CAB, Nuijts RMMA (2010) Value of optical coherence tomography for anterior segment surgery. J Cataract Refr Surg 36(7):1213–1229

    Article  Google Scholar 

  161. Kalev-Landoy M, Day AC, Cordeiro MF, Migdal C (2007) Optical coherence tomography in anterior segment imaging. Acta Ophthalmol Scan 85(4):427–430

    Article  Google Scholar 

  162. Chen TC, Cense B, Park BH, Pierce MC, de Boer JF (2004) Polarization sensitive optical coherence tomography measurement of thickness and birefringence of healthy retinal nerve fiber layer tissue. Invest Ophth Vis Sci 45(Suppl 2):U114

    Google Scholar 

  163. Baumann B, Götzinger E, Pircher M, Sattmann H, Schütze C, Schlanitz F, Ahlers C, Schmidt-Erfurth U, Hitzenberger CK (2010) Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. J Biomed Opt 15(6):061704

    Article  Google Scholar 

  164. Michels S, Pircher M, Geitzenauer W, Simader C, Götzinger E, Findl O, Schmidt-Erfurth U, Hitzenberger CK (2008) Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium. Brit J Ophthalmol 92(2):204–209

    Article  CAS  Google Scholar 

  165. Yazdanfar S, Rollins AM, Izatt JA (2000) Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Opt Lett 25(19):1448–1450

    Google Scholar 

  166. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y (2006) Optical coherence angiography. Opt Express 14(17):7821–7840

    Article  Google Scholar 

  167. Srinivasan VJ, Chen Y, Duker JS, Fujimoto JG (2009) In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT. Opt Express 17(5):3861–3877

    Article  CAS  Google Scholar 

  168. Hermann B, Fernandez EJ, Unterhuber A, Sattmann H, Fercher AF, Drexler W, Prieto PM, Artal P (2004) Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett 29(18):2142–2144

    Google Scholar 

  169. Zawadzki R, Jones S, Olivier S, Zhao M, Bower B, Izatt J, Choi S, Laut S, Werner J (2005) Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express 13(21):8532–8546

    Google Scholar 

  170. Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG (2001) Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 7(4):502–507

    Article  CAS  Google Scholar 

  171. Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M, Yatagai T (2007) In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express 15(10):6121–6139

    Article  Google Scholar 

  172. Hammer DX, Mujat M, Iftimia NV, Lue N, Ferguson RD (2010) Multimodal adaptive optics for depth-enhanced high-resolution ophthalmic imaging. Proc SPIE 7550(1):755011–755012

    Google Scholar 

  173. Schmidt-Erfurth U, Leitgeb RA, Michels S, Povazay B, Sacu S, Hermann B, Ahlers C, Sattmann H, Scholda C, Fercher AF, Drexler W (2005) Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest Ophth Vis Sci 46(9):3393–3402

    Article  Google Scholar 

  174. World Health Organization (2010) Fact sheet no. 317: cardiovascular diseases. WHO, Geneva. http://www.who.int/mediacentre/factsheets/fs317/en/., accessed 19 Nov 2010

  175. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscl Throm Vas 20(5):1262–1275

    CAS  Google Scholar 

  176. Jang I-K, Bouma BE, Kang D-H, Park S-J, Park S-W, Seung K-B, Choi K-B, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39(4):604–609

    Google Scholar 

  177. Low AF, Tearney GJ, Bouma BE, Jang I-K (2006) Technology insight: optical coherence tomography: current status and future development. Nat Clin Pract Card 3:154–162

    Google Scholar 

  178. Tearney GJ, Yabushita H, Houser SL, Thomas Aretz H, Jang I-K, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE (2003) Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107(1):113–119

    Article  Google Scholar 

  179. Tearney JG, Jang I-K, Bouma BE (2006) Optical coherence tomography for imaging the vulnerable plaque. J Biomed Opt 11(2):021002

    Article  Google Scholar 

  180. Yabushita H, Bouma BE, Houser SL, Thomas Aretz H, Jang I-K, Schlendorf KH, Kauffman CR, Shishkov M, Kang D-H, Halpern EF, Tearney GJ (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13):1640–1645

    Article  Google Scholar 

  181. Brezinski ME (2007) Applications of optical coherence tomography to cardiac and musculoskeletal diseases: bench to bedside? J Biomed Opt 12(5):051705

    Article  Google Scholar 

  182. Jang I-K, Tearney GJ, Mac-Neill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Thomas Aretz H, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111(12):1551–1555

    Article  Google Scholar 

  183. Nadkarni SK, Pierce MC, Park BH, de Boer JF, Whittaker P, Bouma BE, Bressner JE, Halpern E, Houser SL, Tearney GJ (2007) Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol 49(13):1474–1481

    Article  CAS  Google Scholar 

  184. Kume T, Akasaka T, Kawamoto T, Okura H, Watanabe N, Toyota E, Neishi Y, Sukmawan R, Sadahira Y, Yoshida K (2006) Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J 152(4):755.e1–755.e4

    Google Scholar 

  185. Raffel OC, Merchant FM, Tearney GJ, Chia S, DeJoseph Gauthier D, Pomerantsev E, Mizuno K, Bouma BE, Jang I-K (2008) In vivo association between positive coronary artery remodelling and coronary plaque characteristics assessed by intravascular optical coherence tomography. Eur Heart J 29(14):1721–1728

  186. Li QX, Fu QQ, Shi SW, Wang YF, Xie JJ, Yu X, Cheng X, Liao YH (2010) Relationship between plasma inflammatory markers and plaque fibrous cap thickness determined by intravascular optical coherence tomography. Heart 96(3):196–201

    Article  CAS  Google Scholar 

  187. Yamada R, Okura H, Kume T, Saito K, Miyamoto Y, Imai K, Tsuchiya T, Maehama T, Okahashi N, Obase K, Hayashida A, Neishi Y, Kawamoto T, Yoshida K (2010) Relationship between arterial and fibrous cap remodeling. Circ Cardiovasc Interv 3(5):484–490

    Article  Google Scholar 

  188. Yu B (2009) Evaluation of statin-induced lipid-rich plaque progression by optical coherence tomography (OCT) combined with intravascular ultrasound (IVUS). http://clinicaltrials.gov/ct2/show/NCT01023607, accessed 22 Mar 2011

  189. Diaz-Sandoval LJ, Bouma BE, Tearney GJ, Jang I-K (2005) Optical coherence tomography as a tool for percutaneous coronary interventions. Catheter Cardiovasc Interv 65(4):492–496

    Google Scholar 

  190. Gonzalo N, Serruys PW, Okamura T, Shen ZJ, Onuma Y, Garcia-Garcia HM, Sarno G, Schultz C, van Geuns RJ, Ligthart J, Regar E (2009) Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach. Heart 95(23):1913–1919

    Article  CAS  Google Scholar 

  191. Murata A, Wallace-Bradley D, Tellez A, Alviar C, Aboodi M, Sheehy A, Coleman L, Perkins L, Nakazawa G, Mintz G, Kaluza GL, Virmani R, Granada JF (2010) Accuracy of optical coherence tomography in the evaluation of neointimal coverage after stent implantation. J Am Coll Cardiol Img 3(1):76–84

    Google Scholar 

  192. Ozaki Y, Okumura M, Ismail TF, Naruse H, Hattori K, Kan S, Ishikawa M, Kawai T, Takagi Y, Ishii J, Prati F, Serruys PW (2010) The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study. Eur Heart J 31(12):1470–1476

    Article  Google Scholar 

  193. Guagliumi G, Sirbu V (2008) Optical coherence tomography: high resolution intravascular imaging to evaluate vascular healing after coronary stenting. Catheter Cardiovasc Interv 72(2):237

    Google Scholar 

  194. Bouma BE, Tearney GJ, Yabushita H, Shishkov M, Kauffman CR, DeJoseph Gauthier D, MacNeill BD, Houser SL, Aretz HT, Halpern EF, Jang I-K (2003) Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89(3):317–320

  195. Fujimoto JG, Boppart SA, Tearney GJ, Bouma BE, Pitris C, Brezinski ME (1999) High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart 82(2):128–133

    CAS  Google Scholar 

  196. Prati F, Cera M, Ramazzotti V, Imola F, Giudice R, Albertucci M (2007) Safety and feasibility of a new non-occlusive technique for facilitated intracoronary optical coherence tomography (OCT) acquisition in various clinical and anatomical scenarios. EuroIntervention 3:365–370, PubMed PMID: 19737719

    Google Scholar 

  197. Yamaguchi T, Terashima M, Akasaka T, Hayashi T, Mizuno K, Muramatsu T, Nakamura M, Nakamura S, Saito S, Takano M, Takayama T, Yoshikawa J, Suzuki T (2008) Safety and feasibility of an intravascular optical coherence tomography image wire system in the clinical setting. Am J Cardiol 101(5):562–567

    Article  Google Scholar 

  198. Brezinski ME, Saunders K, Jesser C, Li X, Fujimoto JG (2001) Index matching to improve optical coherence tomography imaging through blood. Circulation 103(15):1999–2003

    CAS  Google Scholar 

  199. Villard JW, Feldman MD, Kim J, Milner TE, Freeman GL (2002) Use of a blood substitute to determine instantaneous murine right ventricular thickening with optical coherence tomography. Circulation 105(15):1843–1849

    Article  Google Scholar 

  200. Hoang KC, Edris A, Su J, Mukai DS, Mahon S, Petrov AD, Kern M, Ashan C, Chen Z, Tromberg BJ, Narula J, Brenner M (2009) Use of an oxygen-carrying blood substitute to improve intravascular optical coherence tomography imaging. J Biomed Opt 14(3):034028

    Article  CAS  Google Scholar 

  201. Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE, Suter MJ, Chan RC, Evans JA, Jang I-K, Nishioka NS, de Boer JF, Bouma BE (2006) Comprehensive volumetric optical microscopy in vivo. Nat Med 12(12):1429–1433

    CAS  Google Scholar 

  202. Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang I-K, Akasaka T, Costa M, Guagliumi G, Grube E, Ozaki Y, Pinto F, Serruys PWJ (2010) Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 31(4):401–415

    Article  Google Scholar 

  203. Suter MJ, Tearney GJ, Oh W-Y, Bouma BE (2010) Progress in intracoronary optical coherence tomography. IEEE J Sel Top Quant 16(4):706–714

    Article  CAS  Google Scholar 

  204. Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA (1995) Optical biopsy and imaging using optical coherence tomography. Nat Med 1(9):970–972

    Article  CAS  Google Scholar 

  205. Steiner R, Kunzi-Rapp K, Scharffetter-Kochanek K (2003) Optical coherence tomography: clinical applications in dermatology. Med Laser Appl 18(3):249–259

    Article  Google Scholar 

  206. Mogensen M, Jemec GBE, Thrane L, Jørgensen TM, Andersen PE (2009) OCT imaging of skin cancer and other dermatological diseases. J Biophotonics 2(6–7):442–451

    Article  Google Scholar 

  207. Mogensen M, Nürnberg BM, Forman JL, Thomsen JB, Thrane L, Jemec GBE (2009) In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. Br J Dermatol 160(5):1026–1033

    Article  CAS  Google Scholar 

  208. O’Sullivan Communications, Inc. (2009) Michelson Diagnostics awarded CE-mark for clinical use of its VivoSight OCT scanner. Reuters 17/9/2009. http://www.reuters.com/article/2009/09/17/idUS163379+17-Sep-2009+GNW20090917, accessed 1 Dec 2010

  209. Michelson Diagnostics (2010) VivoSight OCT scanner receives FDA 510(k) clearance. http://www.md-ltd.co.uk/2010/174-vivosight-oct-scanner-receives-fda-510k-clearance.html, accessed 1 Dec 2010

  210. Hewett J (2010) OCT skin cancer trials to expand next year. Optics.org 15/11/2010. http://optics.org/news/1/6/16, accessed 1 Dec 2010

  211. Mogensen M, Morsy HA, Thrane L, Jemec GBE (2008) Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology 217(1):14–20

    Article  Google Scholar 

  212. Alex A, Považay B, Hofer B, Popov S, Glittenberg C, Binder S, Drexler W (2010) Multispectral in vivo three-dimensional optical coherence tomography of human skin. J Biomed Opt 15(2):026025

    Article  Google Scholar 

  213. Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol 7(1):1

    Google Scholar 

  214. Gambichler T, Regeniter P, Bechara FG, Orlikov A, Vasa R, Moussa G, Stücker M, Altmeyer P, Hoffmann K (2007) Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. J Am Acad Dermatol 57(4):629–637

    Article  Google Scholar 

  215. Gambichler T, Huyn J, Tomi NS, Moussa G, Moll C, Sommer A, Altmeyer P, Hoffmann K (2006) A comparative pilot study on ultraviolet-induced skin changes assessed by noninvasive imaging techniques in vivo. Photochem Photobiol 82(4):1103–1107

    Article  CAS  Google Scholar 

  216. Gambichler T, Orlikov A, Vasa R, Moussa G, Hoffmann K, Stücker M, Altmeyer P, Bechara FG (2007) In vivo optical coherence tomography of basal cell carcinoma. J Dermatol Sci 45(3):167–173

    Article  Google Scholar 

  217. Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL (2006) Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J Am Acad Dermatol 55(3):408–412

    Article  Google Scholar 

  218. Khandwala M, Penmetsa BR, Dey S, Schofield JB, Jones CA, Podoleanu A (2010) Imaging of periocular basal cell carcinoma using en face optical coherence tomography: a pilot study. Brit J Ophthalmol 94(10):1332–1336

    Article  CAS  Google Scholar 

  219. Jørgensen TM, Tycho A, Mogensen M, Jemec GBE, Bjerring P (2008) Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography. Skin Res Technol 14(3):364–369

    Article  Google Scholar 

  220. Korde VR, Bonnema GT, Xu W, Krishnamurthy C, Ranger-Moore J, Saboda K, Slayton LD, Salasche SJ, Warneke JA, Alberts DS, Barton JK (2007) Using optical coherence tomography to evaluate skin sun damage and precancer. Las Surg Med 39(9):687–695

    Article  Google Scholar 

  221. Mogensen M, Jørgensen TM, Thrane L, Nürnberg BM, Jemec GBE (2010) Improved quality of optical coherence tomography imaging of basal cell carcinomas using speckle reduction. Exp Dermatol 19(8):e293–e295

    Google Scholar 

  222. Strasswimmer J, Pierce MC, Park BH, Neel V, de Boer JF (2004) Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt 9(2):292–298

    Article  Google Scholar 

  223. Mogensen M, Jørgensen TM, Nürnberg BM, Morsy HA, Thomsen JB, Thrane L, Jemec GBE (2009) Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg 35(6):965–972

    Article  CAS  Google Scholar 

  224. Standish BA, Jin X, Smolen J, Mariampillai A, Munce NR, Wilson BC, Alex Vitkin I, Yang VXD (2007) Interstitial Doppler optical coherence tomography monitors microvascular changes during photodynamic therapy in a Dunning prostate model under varying treatment conditions. J Biomed Opt 12(3):034022

    Article  Google Scholar 

  225. Evans JA, Poneros JM, Bouma BE, Bressner J, Halpern EF, Shishkov M, Lauwers GY, Mino-kenudson M, Nishioka NS, Tearney GJ (2006) Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus. Clin Gastroenterol Hepatol 4(1):38

    Google Scholar 

  226. Chen Y, Aguirre AD, Hsiung PL, Desai S, Herz PR, Pedrosa M, Huang Q, Figueiredo M, Huang S-W, Koski A, Schmitt JM, Fujimoto JG, Mashimo H (2007) Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology. Endoscopy 39(7):599

    Article  CAS  Google Scholar 

  227. Wang RK, Elder JB, Smith V (2001) High resolution imaging of colonic mucosa using optical coherence tomography. Proc SPIE 4251:242–246

    Article  Google Scholar 

  228. Tsuboi M, Hayashi A, Ikeda N, Honda H, Kato Y, Ichinose S, Kato H (2005) Optical coherence tomography in the diagnosis of bronchial lesions. Lung Cancer 49(3):387–394

    Article  Google Scholar 

  229. Jesser CA, Boppart SA, Pitris C, Stamper DL, Nielsen GP, Brezinski ME, Fujimoto JG (1999) High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology. Brit J Radiol 72(864):1170–1176

    Google Scholar 

  230. Boppart SA, Luo W, Marks DL, Singletary KW (2004) Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Res Tr 84(2):85–97

    Article  Google Scholar 

  231. Boppart SA, Bouma BE, Pitris C, Tearney GJ, Fujimoto JG, Brezinski ME (1997) Forward-imaging instruments for optical coherence tomography. Opt Lett 22(21):1618–1620

    Article  CAS  Google Scholar 

  232. Li X, Martin S, Pitris C, Ghanta R, Stamper D, Harman M, Fujimoto J, Brezinski M (2005) High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery. Arthritis Res Ther 7(2):R318–R323

    Article  Google Scholar 

  233. Zheng K, Martin SD, Rashidifard CH, Liu B, Brezinski ME (2010) In vivo micron-scale arthroscopic imaging of human knee osteoarthritis with optical coherence tomography: comparison with magnetic resonance imaging and arthroscopy. Am J Orthop 39(3):122–125

    Google Scholar 

  234. Chu CR, Izzo NJ, Irrgang JJ, Ferretti M, Studer RK (2007) Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography. J Biomed Opt 12(5):051703

    Article  CAS  Google Scholar 

  235. Ling CH-Y, Pozzi A, Thieman KM, Tonks CA, Guo S, Xie H, Horodyski M (2010) The potential of optical coherence tomography for diagnosing meniscal pathology. Meas Sci Technol 21(4):045801

    Article  CAS  Google Scholar 

  236. McLaughlin RA, Scolaro L, Robbins P, Hamza S, Saunders C, Sampson DD (2010) Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer. Cancer Res 70(7):2579–2584

    Google Scholar 

  237. Nguyen FT, Zysk AM, Chaney EJ, Adie SG, Kotynek JG, Oliphant UJ, Bellafiore FJ, Rowland KM, Johnson PA, Boppart SA (2010) Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer. IEEE Eng Med Biol 29(2):63–70

    Article  Google Scholar 

  238. Boppart SA, Brezinski ME, Bouma BE, Tearney GJ, Fujimoto JG (1996) Investigation of developing embryonic morphology using optical coherence tomography. Dev Biol 177(1):54–63

    Article  CAS  Google Scholar 

  239. Keller BB (1997) Chapter 7: Embryonic cardiovascular function, coupling, and maturation: a species view. In: Burggren WW, Keller B (eds) Development of cardiovascular systems: molecules to organisms. Cambridge University Press, Cambridge, pp 65–91

  240. Hoffman JIE (1995) Incidence of congenital heart disease: I. Postnatal incidence. Pediatr Cardiol 16(3):103–113

    Google Scholar 

  241. Boppart SA, Tearney GJ, Bouma BE, Southern JF, Brezinski ME, Fujimoto JG (1997) Noninvasive assessment of the developing xenopus cardiovascular system using optical coherence tomography. Proc Natl Acad Sci USA 94(9):4256–4261

    Google Scholar 

  242. Mariampillai A, Standish BA, Munce NR, Randall C, Liu G, Jiang JY, Cable AE, Vitkin IA, Yang VXD (2007) Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system. Opt Express 15(4):1627–1638

    Article  Google Scholar 

  243. Yelbuz TM, Choma MA, Thrane L, Kirby ML, Izatt JA (2002) Optical coherence tomography: a new high-resolution imaging technology to study cardiac development in chick embryos. Circulation 106(22):2771

    Article  Google Scholar 

  244. Jenkins MW, Adler DC, Gargesha M, Huber R, Rothenberg F, Belding J, Watanabe M, Wilson DL, Fujimoto JG, Rollins AM (2007) Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser. Opt Express 15(10):6251–6267

    Google Scholar 

  245. Luo W, Marks DL, Ralston TS, Boppart SA (2006) Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. J Biomed Opt 11(2):021014–021018

    Article  Google Scholar 

  246. Norozi K, Thrane L, Männer J, Pedersen F, Wolf I, Mottl-Link S, Meinzer H-P, Wessel A, Yelbuz TM (2008) In vivo visualisation of coronary artery development by high-resolution optical coherence tomography. Heart 94(2):130

    Article  CAS  Google Scholar 

  247. Männer J, Thrane L, Norozi K, Yelbuz TM (2009) In vivo imaging of the cyclic changes in cross-sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: a contribution to the understanding of the ontogenesis of cardiac pumping function. Dev Dynam 238(12):3273–3284

    Article  Google Scholar 

  248. Yang VXD, Gordon M, Seng-Yue E, Lo S, Qi B, Pekar J, Mok A, Wilson B, Vitkin I (2003) High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of Xenopus laevis. Opt Express 11(14):1650–1658

    Google Scholar 

  249. Larina IV, Sudheendran N, Ghosn M, Jiang J, Cable A, Larin KV, Dickinson ME (2008) Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography. J Biomed Opt 13(6):060506

    Article  Google Scholar 

  250. Thrane L, Larsen HE, Norozi K, Pedersen F, Thomsen JB, Trojer M, Yelbuz TM (2009) Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo. Opt Eng 48(2):023201–023213

    Google Scholar 

  251. Lin S-J, Jee S-H, Kuo C-J, Wu R Jr, Lin W-C, Chen J-S, Liao Y-H, Hsu C-J, Tsai T-F, Chen Y-F, Dong C-Y (2006) Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett 31(18):2756–2758

    Article  Google Scholar 

  252. König K, Speicher M, Bückle R, Reckfort J, McKenzie G, Welzel J, Koehler MJ, Elsner P, Kaatz M (2009) Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases. J Biophotonics 2(6–7):389–397

    Article  Google Scholar 

  253. Vinegoni C, Ralston T, Tan W, Luo W, Marks DL, Boppart SA (2006) Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy. Appl Phys Lett 88(5):1–3

    Google Scholar 

  254. Lawson EE, Barry BW, Williams AC, Edwards HGM (1997) Biomedical applications of Raman spectroscopy. J Raman Spectrosc 28(2–3):111–117

    Article  CAS  Google Scholar 

  255. Ellis DI, Goodacre R (2006) Metabolic finger-printing in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131(8):875–885

    Article  CAS  Google Scholar 

  256. Jess PRT, Mazilu M, Dholakia K, Riches AC, Simon Herrington C (2009) Optical detection and grading of lung neoplasia by Raman microspectroscopy. Int J Cancer 124(2):376–380

    Article  CAS  Google Scholar 

  257. Mo J, Zheng W, Low JJH, Ng J, Ilancheran A, Huang Z (2009) High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia. Anal Chem 81(21):8908–8915, PMID: 19817391

    Article  CAS  Google Scholar 

  258. Patil CA, Bosschaart N, Keller MD, van Leeuwen TG, Mahadevan-Jansen A (2008) Combined Raman spectroscopy and optical coherence tomography device for tissue characterization. Opt Lett 33(10):1135–1137

    Article  Google Scholar 

  259. Patil CA, Kirshnamoorthi H, Ellis DL, van Leeuwen TG, Mahadevan-Jansen A (2011) A clinical instrument for combined Raman spectroscopy-optical coherence tomography of skin cancers. Laser Surg Med 43(2):143–151

    Article  Google Scholar 

  260. Webb RH, Hughes GW (1981) Scanning laser ophthalmoscope. IEEE T Biomed Eng BME 28(7):488–492

    Article  CAS  Google Scholar 

  261. Heidelberg Engineering, Inc. (2010) Spectralis HRA+OCT data sheet (no. 1758). Heidelberg Engineering, Inc., Heidelberg

  262. Helb H-M, Issa PC, Fleckenstein S, Schmitz-Valckenberg M, Scholl HPN, Meyer CH, Eter N, Holz FG (2010) Clinical evaluation of simultaneous confocal scanning laser ophthalmoscopy imaging combined with high-resolution, spectral-domain optical coherence tomography. Acta Ophthalmol 88(8):842–849

    Google Scholar 

  263. Minghua X, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77(4):41101

    Google Scholar 

  264. Li L, Maslov K, Ku G, Wang LV (2009) Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies. Opt Express 17(19):16450–16455

    Article  CAS  Google Scholar 

  265. Zhang EZ, Laufer J, Považay B, Alex A, Hofer B, Drexler W, Beard P (2010) Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system. Proc SPIE 7564:75640U

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Rainer Leitgeb and Lars Thrane for their contributions. We feel indebted to the editors for giving us the opportunity to contribute to this special issue, and to the referees for their helpful comments and suggestions. Further, we gratefully acknowledge the financial support from the European Union project FUN OCT (FP7 HEALTH, contract no. 201880).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Andersen.

Additional information

Published in the special issue Biophotonics with Guest Editors Jürgen Popp and Reiner Salzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marschall, S., Sander, B., Mogensen, M. et al. Optical coherence tomography—current technology and applications in clinical and biomedical research. Anal Bioanal Chem 400, 2699–2720 (2011). https://doi.org/10.1007/s00216-011-5008-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5008-1

Keywords

Navigation