Skip to main content
Log in

Natural history of bone bruises after acute knee injury: clinical outcome and histopathological findings

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The purpose of this paper is to review the scientific literature on the natural history of bone bruises and the experimental studies regarding the histopathological effects of impaction load on articular cartilage and subchondral bone. Bone bruises with subchondral or osteochondral injuries, or geographic bone bruises seemed to be persistent for years after trauma on MRI. Biopsy samples of the articular cartilage overlying the bone bruise lesions showed degeneration or necrosis of chondrocytes and loss of proteoglycan. Experimental studies using a single impact load revealed chondrocytes death, alteration of the mechanical properties of cartilage explants and/or an increase in the thickness of subchondral bone. These data are indicative of a significant injury to normal articular cartilage homeostasis, and support the suggestion that severe bone bruise is a precursor of early degenerative changes. We recommend delaying return to full weightbearing status when a severe bone bruise is detected to prevent further collapse of subchondral bone and further aggravation of articular cartilage injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amiel D, Coutts RD, Abel M, Stewart W, Harwood F, Akeson WH (1985) Rib perichondral grafts for the repair of full-thickness articular-cartilage defects. J Bone Joint Surg Am 67:911–920

    PubMed  CAS  Google Scholar 

  2. Bert JM (1993) Role of abrasion arthroplasty and debridement in the management of arthritis of the knee. Rheum Dis Clin N Am 19:725–739

    CAS  Google Scholar 

  3. Bretlau T, Tuxoe J, Larsen L, Jorgensen U, Thomsen HS, Lausten GS (2002) Bone bruise in the acutely injured knee. Knee Surg Sports Traumatol Arthrosc 10:96–101

    Article  PubMed  Google Scholar 

  4. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  PubMed  CAS  Google Scholar 

  5. Buckwalter JA, Mankin HJ (1998) Articular cartilage. Tissue design and chondrocyte–matrix interactions. Instr Course Lect 47:477–486

    PubMed  CAS  Google Scholar 

  6. Chen CT, Burton-Wurster N, Borden C, Hueffer K, Bloom SE, Lust G (2001) Chondrocyte necrosis and apoptosis in impact damaged articular cartilage. J Orthop Res 19:703–711

    Article  PubMed  CAS  Google Scholar 

  7. Clark AG, Jordan JM, Vilim V, Renner JB, Dragomir AD, Luta G, Kraus VB (1999) Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity. The Johnston County Osteoarthritis Project. Arthritis Rheum 42:2356–2364

    Article  PubMed  CAS  Google Scholar 

  8. Costa-Paz M, Muscolo DL, Ayerza M, Makino A, Aponte-Tinao L (2001) Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy 17:445–449

    Article  PubMed  CAS  Google Scholar 

  9. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22:632–644

    PubMed  CAS  Google Scholar 

  10. Davies NH, Niall D, King LJ, Lavelle J, Healy JC (2004) Magnetic resonance imaging of bone bruising in the acutely injured knee. Short-term outcome. Clin Radiol 59:439–445

    Article  PubMed  CAS  Google Scholar 

  11. Engebretsen L, Arendt E, Fritts HM (1993) Osteochondral lesions and cruciate ligament injuries. MRI in 18 knees. Acta Orthop Scand 64:434–436

    PubMed  CAS  Google Scholar 

  12. Escalas F, Curell R (1994) Occult posttraumatic bone injury. Knee Surg Sports Traumatol Arthrosc 2:147–149

    Article  PubMed  CAS  Google Scholar 

  13. Ewers BJ, Dvoracek-Driksna D, Orth MW, Haut RC (2001) The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. J Orthop Res 19:779–784

    Article  PubMed  CAS  Google Scholar 

  14. Faber KJ, Dill JR, Amendola A, Thain L, Spouge A, Fowler PJ (1999) Occult osteochondral lesions after anterior cruciate ligament rupture. Six-year magnetic resonance imaging follow-up study. Am J Sports Med 27:489–494

    PubMed  CAS  Google Scholar 

  15. Fang C, Johnson D, Leslie MP, Carlson CS, Robbins M, Di Cesare PE (2001) Tissue distribution and measurement of cartilage oligomeric matrix protein in patients with magnetic resonance imaging-detected bone bruises after acute anterior cruciate ligament tears. J Orthop Res 19:634–641

    Article  PubMed  CAS  Google Scholar 

  16. Fithian DC, Paxton EW, Stone ML, Luetzow WF, Csintalan RP, Phelan D, Daniel DM (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33:335–346

    Article  PubMed  Google Scholar 

  17. Gilmore RS, Palfrey AJ (1988) Chondrocyte distribution in the articular cartilage of human femoral condyles. J Anat 157:23–31

    PubMed  CAS  Google Scholar 

  18. Graf BK, Cook DA, De Smet AA, Keene JS (1993) “Bone bruises” on magnetic resonance imaging evaluation of anterior cruciate ligament injuries. Am J Sports Med 21:220–223

    PubMed  CAS  Google Scholar 

  19. Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, Paulsson M, Rosa-Pimentel E, Sommarin Y, Wendel M, Oldberg A, Heinegard D (1992) Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem 25:6132–6136

    Google Scholar 

  20. Hoikka VEJ, Jaroma HJ, Ritsilä VA (1990) Reconstruction of the patellar articulation with periosteal grafts. Acta Orthop Scand 61:36–39

    PubMed  CAS  Google Scholar 

  21. Hooiveld MJ, Roosendaal G, Jacobs KM, Vianen ME, van den Berg HM, Bijlsma JW, Lafeber FP (2004) Initiation of degenerative joint damage by experimental bleeding combined with loading of the joint. A possible mechanism of hemophilic arthropathy. Arthritis Rheum 50:2024–2031

    Article  PubMed  Google Scholar 

  22. Huntley JS, Bush PG, McBirnie JM, Simpson AH, Hall AC (2005) Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg Am 87:351–360

    Article  PubMed  CAS  Google Scholar 

  23. Hunziker EB (2002) Articular cartilage repair. Basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463

    Article  PubMed  CAS  Google Scholar 

  24. Hunziker EB, Quinn TM (2003) Surgical removal of articular cartilage leads to loss of chondrocytes from cartilage bordering the wound edge. J Bone Joint Surg Am 85-A Suppl 2:85–92

    Google Scholar 

  25. Johnson DL, Bealle DP, Brand JC Jr, Nyland J, Caborn DN (2000) The effect of a geographic lateral bone bruise on knee inflammation after acute anterior cruciate ligament rupture. Am J Sports Med 28:152–155

    PubMed  CAS  Google Scholar 

  26. Johnson DL, Urban WP Jr, Caborn DN, Vanarthos WJ, Carlson CS (1998) Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med 26:409–414

    PubMed  CAS  Google Scholar 

  27. Johnson LL (1989) Arthroscopic abrasion arthroplasty historical and pathological perspective. Present status. Arthroscopy 2:54–69

    Article  Google Scholar 

  28. Kettner NW, Pierre-Jerome C (1992) Magnetic resonance imaging of the wrist. Occult osseous lesions. J Manipulative Physiol Ther 15:599–603

    PubMed  CAS  Google Scholar 

  29. Krosshaug T, Andersen TE, Olsen OE, Myklebust G, Bahr R (2005) Research approaches to describe the mechanisms of injuries in sport. Limitations and possibilities. Br J Sports Med 39:330–339

    Article  PubMed  CAS  Google Scholar 

  30. Kurz B, Jin M, Patwari P, Cheng DM, Lark MW, Grodzinsky AJ (2001) Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Orthop Res 19:1140–1146

    Article  PubMed  CAS  Google Scholar 

  31. Lewis JL, Deloria LB, Oyen-Tiesma M, Thompson RC Jr, Ericson M, Oegema TR Jr (2003) Cell death after cartilage impact occurs around matrix cracks. J Orthop Res 21:881–887

    Article  PubMed  Google Scholar 

  32. Lohmander LS, Ionescu M, Jugessur H, Poole AR (1999) Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum 42:534–544

    Article  PubMed  CAS  Google Scholar 

  33. Lynch TC, Crues JV 3rd, Morgan FW, Sheehan WE, Harter LP, Ryu R (1989) Bone abnormalities of the knee. Prevalence and significance at MR imaging. Radiology 171:761–766

    PubMed  CAS  Google Scholar 

  34. Mair SD, Schlegel TF, Gill TJ, Hawkins RJ, Steadman JR (2004) Incidence and location of bone bruises after acute posterior cruciate ligament injury. Am J Sports Med 32:1681–1687

    Article  PubMed  Google Scholar 

  35. Matsusue Y, Yamamuro Y, Hama H (1993) Arthroscopic multiple osteochondral transplantation to the chondral defects in the knee associated with anterior cruciate ligament disruption. Arthroscopy 9:318–321

    Article  PubMed  CAS  Google Scholar 

  36. Miller MD, Osborne JR, Gordon WT, Hinkin DT, Brinker MR (1998) The natural history of bone bruises. A prospective study of magnetic resonance imaging-detected trabecular microfractures in patients with isolated medial collateral ligament injuries. Am J Sports Med 26:15–19

    PubMed  CAS  Google Scholar 

  37. Minas T, Nehrer S (1997) Current concepts in the treatment of articular cartilage defects. Orthopaedics 20:525–538

    CAS  Google Scholar 

  38. Mink JH, Deutsch AL (1989) Occult cartilage and bone injuries of the knee. Detection, classification, and assessment with MR imaging. Radiology 170:823–829

    PubMed  CAS  Google Scholar 

  39. Myklebust G, Bahr R (2005) Return to play guidelines after anterior cruciate ligament surgery. Br J Sports Med 39:127–131

    Article  PubMed  CAS  Google Scholar 

  40. Myklebust G, Holm I, Maehlum S, Engebretsen L, Bahr R (2003) Clinical, functional, and radiologic outcome in team handball players 6 to 11 years after anterior cruciate ligament injury. A follow-up study. Am J Sports Med 31:981–989

    PubMed  Google Scholar 

  41. Newberry WN, Garcia JJ, Mackenzie CD, Decamp CE, Haut RC (1998) Analysis of acute mechanical insult in an animal model of post-traumatic osteoarthrosis. J Biomech Eng 120:704–709

    PubMed  CAS  Google Scholar 

  42. Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J (2002) Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br 84:571–578

    Article  PubMed  CAS  Google Scholar 

  43. Parkkinen JJ, Lammi MJ, Helminen HJ, Tammi M (1992) Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res 10:610–620

    Article  PubMed  CAS  Google Scholar 

  44. Pinar H, Akseki D, Kovanlikaya I, Arac S, Bozkurt M (1997) Bone bruises detected by magnetic resonance imaging following lateral ankle sprains. Knee Surg Sports Traumatol Arthrosc 5:113–117

    Article  PubMed  CAS  Google Scholar 

  45. Quinn TM, Grodzinsky AJ, Hunziker EB, Sandy JD (1998) Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. J Orthop Res 16:490–499

    Article  PubMed  CAS  Google Scholar 

  46. Rangger C, Kathrein A, Freund MC, Klestil T, Kreczy A (1998) Bone bruise of the knee. Histology and cryosections in 5 cases. Acta Orthop Scand 69:291–294

    Article  PubMed  CAS  Google Scholar 

  47. Repo RU, Finlay JB (1977) Survival of articular cartilage after controlled impact. J Bone Joint Surg Am 59:1068–1076

    PubMed  CAS  Google Scholar 

  48. Roemer FW, Bohndorf K (2002) Long-term osseous sequelae after acute trauma of the knee joint evaluated by MRI. Skeletal Radiol 31:615–623

    Article  PubMed  CAS  Google Scholar 

  49. Rosen MA, Jackson DW, Berger PE (1991) Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures. Arthroscopy 7:45–51

    Article  PubMed  CAS  Google Scholar 

  50. Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7:619–636

    Article  PubMed  CAS  Google Scholar 

  51. Speer KP, Spritzer CE, Bassett FH III, Feagin JA Jr, Garrett WE Jr (1992) Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med 20:382–389

    PubMed  CAS  Google Scholar 

  52. Speer KP, Warren RF, Wickiewicz TL, Horowitz L, Henderson L (1995) Observations on the injury mechanism of anterior cruciate ligament tears in skiers. Am J Sports Med 23:77–81

    PubMed  CAS  Google Scholar 

  53. Thompson RC Jr, Oegema TR Jr, Lewis JL, Wallace L (1991) Osteoarthrotic changes after acute transarticular load. An animal model. J Bone Joint Surg Am 73:990–1001

    PubMed  Google Scholar 

  54. Thompson RC Jr, Vener MJ, Griffiths HJ, Lewis JL, Oegema TR Jr, Wallace L (1993) Scanning electron-microscopic and magnetic resonance-imaging studies of injuries to the patellofemoral joint after acute transarticular loading. J Bone Joint Surg Am 75:704–713

    PubMed  Google Scholar 

  55. Torzilli PA, Grigiene R, Borrelli J Jr, Helfet DL (1999) Effect of impact load on articular cartilage. Cell metabolism and viability, and matrix water content. J Biomech Eng 121:433–441

    PubMed  CAS  Google Scholar 

  56. Vellet AD, Marks PH, Fowler PJ, Munro TG (1991) Occult posttraumatic osteochondral lesions of the knee. Prevalence, classification, and short term sequelae evaluated with MR imaging. Radiology 178:271–276

    PubMed  CAS  Google Scholar 

  57. Wright RW, Phaneuf MA, Limbird TJ, Spindler KP (2000) Clinical outcome of isolated subcortical trabecular fractures (bone bruise) detected on magnetic resonance imaging in knees. Am J Sports Med 28:663–667

    PubMed  CAS  Google Scholar 

  58. Yao L, Lee JK (1988) Occult intraosseous fracture. Detection with MR imaging. Radiology 167:749–751

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Engebretsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamae, A., Engebretsen, L., Bahr, R. et al. Natural history of bone bruises after acute knee injury: clinical outcome and histopathological findings. Knee Surg Sports Traumatol Arthrosc 14, 1252–1258 (2006). https://doi.org/10.1007/s00167-006-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-006-0087-9

Keywords

Navigation