Skip to main content
Log in

Association of the HLA region with multiple sclerosis as confirmed by a genome screen using >10,000 SNPs on DNA chips

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, with a complex genetic background. Here, we present a genome screen for association in small scale, employing 11,555 single nucleotide polymorphisms (SNPs) on DNA chips for genotyping 100 MS patients stratified for HLA-DR2+ and 100 controls. More than 500 SNPs revealed significant differences between cases and controls before Bonferroni correction. A fraction of these SNPs was reanalysed in two additional cohorts of patients and controls, using high-throughput genotyping methods. A marker on chromosome 6p21.32 (rs2395182) yielded the highest significance level, validating the established HLA-DR association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hohlfeld R, Wekerle H (2001) Immunological update on multiple sclerosis. Curr Opin Neurol 14:299–304

    Article  CAS  PubMed  Google Scholar 

  2. Ebers GC, Bulman DE, Sadovnick AD, Paty DW, Warren S, Hader W, Murray TJ, Seland TP, Duquette P, Grey T, et al (1986) A population-based study of multiple sclerosis in twins. N Engl J Med 315:1638–1642

    Google Scholar 

  3. Epplen C, Jackel S, Santos EJ, D’Souza M, Poehlau D, Dotzauer B, Sindern E, Haupts M, Rude KP, Weber F, et al (1997) Genetic predisposition to multiple sclerosis as revealed by immunoprinting. Ann Neurol 41:341–352

    CAS  Google Scholar 

  4. Ebers GC, Sadovnick AD, Risch NJ (1995) A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 377:150–151

    Article  CAS  PubMed  Google Scholar 

  5. Casetta I, Granieri E (2000) Prognosis of multiple sclerosis: environmental factors. Neurol Sci 21:S839–S842

    Google Scholar 

  6. Weinshenker BG, Kantarci OH (2000) Seeking genes for MS: big risks for big gains. Neurology 54:542–544

    Google Scholar 

  7. Kalman B, Albert RH, Leist TP (2002) Genetics of multiple sclerosis: determinants of autoimmunity and neurodegeneration. Autoimmunity 35:225–234

    Google Scholar 

  8. GAMES; Transatlantic Multiple Sclerosis Genetics Cooperative (2003) A meta-analysis of whole genome linkage screens in multiple sclerosis. J Neuroimmunol 143:39–46

    Google Scholar 

  9. Kruglyak L (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 22:139–144

    Google Scholar 

  10. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA (2004) Mapping complex disease loci in whole-genome association studies. Nature 429:446–452

    Article  CAS  PubMed  Google Scholar 

  11. Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat Genet 33[Suppl]:228–237

    Google Scholar 

  12. Wall JD, Pritchard JK (2003) Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 4:587–597

    Google Scholar 

  13. Shifman S, Kuypers J, Kokoris M, Yakir B, Darvasi A (2003) Linkage disequilibrium patterns of the human genome across populations. Hum Mol Genet 12:771–776

    Article  CAS  PubMed  Google Scholar 

  14. Wang WY, Todd JA (2003) The usefulness of different density SNP maps for disease association studies of common variants. Hum Mol Genet 12:3145–3149

    Google Scholar 

  15. Germer S, Holland MJ, Higuchi R (2000) High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Res 10:258–266

    Google Scholar 

  16. Wolford JK, Blunt D, Ballecer C, Prochazka M (2000) High-throughput SNP detection by using DNA pooling and denaturing high performance liquid chromatography (DHPLC). Hum Genet 107:483–487

    Google Scholar 

  17. Myakishev MV, Khripin Y, Hu S, Hamer DH (2001) High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res 11:163–169

    Google Scholar 

  18. Bray MS, Boerwinkle E, Doris PA (2001) High-throughput multiplex SNP genotyping with MALDI-TOF mass spectrometry: practice, problems and promise. Human Mutat 17:296–304

    Google Scholar 

  19. Hampe J, Wollstein A, Lu T, Frevel HJ, Will M, Manaster C, Schreiber S (2001) An integrated system for high throughput TaqMan-based SNP genotyping. Bioinformatics 17:654–655

    Google Scholar 

  20. Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura Y (2001) A high-throughput SNP typing system for genome-wide association studies. J Hum Genet 46:471–477

    Article  CAS  PubMed  Google Scholar 

  21. Jobs M, Howell WM, Stromqvist L, Mayr T, Brookes AJ (2003) DASH-2: flexible, low-cost, and high-throughput SNP genotyping by dynamic allele-specific hybridization on membrane arrays. Genome Res 13:916–924

    Google Scholar 

  22. Marnellos G (2003) High-throughput SNP analysis for genetic association studies. Curr Opin Drug Discov Dev 6:317–321

    Google Scholar 

  23. Consortium TIH (2003) The International HapMap project. Nature 426:789–796

    Google Scholar 

  24. Couzin J (2004) Genomics: consensus emerges on HapMap strategy. Science 304:671–673

    Google Scholar 

  25. Schmidt CW (2003) HapMap: building a database with blocks. EHP Toxicogenomics 111:A16

    Google Scholar 

  26. Goedde R, Sawcer S, Boehringer S, Miterski B, Sindern E, Haupts M, Schimrigk S, Compston A, Epplen JT (2002) A genome screen for linkage disequilibrium in HLA-DRB1*15-positive Germans with multiple sclerosis based on 4666 microsatellite markers. Hum Genet 111:270–277

    Google Scholar 

  27. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, Johnson KP, Sibley WA, Silberberg DH, Tourtellotte WW (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13:227–231

    CAS  PubMed  Google Scholar 

  28. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    CAS  PubMed  Google Scholar 

  29. Matsuzaki H, Loi H, Dong S, Tsai YY, Fang J, Law J, Di X, Liu WM, Yang G, Liu G, et al (2004) Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res 14:414–425

    Google Scholar 

  30. Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics 53:1253–1261

    Google Scholar 

  31. Excoffier L, Slatkin M (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921–927

    CAS  PubMed  Google Scholar 

  32. Hawley ME, Kidd KK (1995) HAPLO: a program using the EM algorithm to estimate the frequencies of multi-site haplotypes. J Heredity 86:409–411

    Google Scholar 

  33. Rohde K, Fuerst R (2001) Haplotyping and estimation of haplotype frequencies for closely linked biallelic multilocus genetic phenotypes including nuclear family information. Human Mutat 17:289–295

    Google Scholar 

  34. Wu J, Williams TM (2002) DRB1/3/5 locus sequence based allele identification. International Histocompatibility Working Group (IHWG), Seattle

  35. Bennetts BH, Teutsch SM, Buhler MM, Heard RN, Stewart GJ (1999) HLA-DMB gene and HLA-DRA promoter region polymorphisms in Australian multiple sclerosis patients. Hum Immunol 60:886–893

    Google Scholar 

  36. Janecke AR, Thompson DA, Utermann G, Becker C, Hubner CA, Schmid E, McHenry CL, Nair AR, Ruschendorf F, Heckenlively J, et al (2004) Mutations in RDH12 encoding a photoreceptor cell retinol dehydrogenase cause childhood-onset severe retinal dystrophy. Nat Genet 36:850–854

    Google Scholar 

  37. Kaindl AM, Rüschendorf F, Krause S, Goebel H-H, Koehler K, Becker C, Pongratz D, Müller-Höcker J, Nürnberg P, Stoltenburg-Didinger G, et al (2004) Missense mutations of ACTA1 cause dominant congenital myopathy with cores. Med Genet 41:842–848

    Google Scholar 

  38. Uhlenberg B, Schuelke M, Ruschendorf F, Ruf N, Kaindl AM, Henneke M, Thiele H, Stoltenburg-Didinger G, Aksu F, Topaloglu H, et al (2004) Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus–Merzbacher-like disease. Am J Hum Genet 75:251-260

    Article  Google Scholar 

  39. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  CAS  PubMed  Google Scholar 

  40. Alizadeh M, Genin E, Babron MC, Birebent B, Cournu-Rebeix I, Yaouanq J, Dreano S, Sawcer S, Compston A, Clanet M, et al (2003) Genetic analysis of multiple sclerosis in Europeans: French data. J Neuroimmunol 143:74–78

    Google Scholar 

  41. Barcellos LF, Oksenberg JR, Begovich AB, Martin ER, Schmidt S, Vittinghoff E, Goodin DS, Pelletier D, Lincoln RR, Bucher P, et al (2003) HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 72:710–716

    Article  CAS  PubMed  Google Scholar 

  42. Bielecki B, Mycko MP, Tronczynska E, Bieniek M, Sawcer S, Setakis E, Benediktsson K, Compston A, Selmaj KW (2003) A whole genome screen for association in Polish multiple sclerosis patients. J Neuroimmunol 143:107–111

    Google Scholar 

  43. Coraddu F, Sawcer S, Feakes R, Chataway J, Broadley S, Jones HB, Clayton D, Gray J, Smith S, Taylor C et al (1998) HLA typing in the United Kingdom multiple sclerosis genome screen. Neurogenetics 2:24–33

    Google Scholar 

  44. Haines JL, Terwedow HA, Burgess K, Pericak-Vance MA, Rimmler JB, Martin ER, Oksenberg JR, Lincoln R, Zhang DY, Banatao DR et al (1998) Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity: the multiple sclerosis genetics group. Hum Mol Genet 7:1229–1234

    Article  CAS  PubMed  Google Scholar 

  45. Ligers A, Dyment DA, Willer CJ, Sadovnick AD, Ebers G, Risch N, Hillert J (2001) Evidence of linkage with HLA-DR in DRB1*15-negative families with multiple sclerosis. Am J Hum Genet 69:900–903

    Google Scholar 

  46. Martin R (1997) Genetics of multiple sclerosis—how could disease-associated HLA-types contribute to pathogenesis? J Neural Transm Suppl 49:177–194

    Google Scholar 

  47. Bayley JP, Ottenhoff TH, Verweij CL (2004) Is there a future for TNF promoter polymorphisms? Genes Immun 5:315–329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Hertie Stiftung (Frankfurt, Germany, project no. 1.319.110/02/05) and the German Federal Ministry of Science and Education through the National Genome Research Network (NGFN grant 01GR0104). The skilful technical assistance of A. Petzold and K. Schlang are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Gödde.

Additional information

P. Nürnberg and J.T. Epplen contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gödde, R., Rohde, K., Becker, C. et al. Association of the HLA region with multiple sclerosis as confirmed by a genome screen using >10,000 SNPs on DNA chips. J Mol Med 83, 486–494 (2005). https://doi.org/10.1007/s00109-005-0650-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0650-8

Keywords

Navigation