Skip to main content
Log in

Human bone cellsin vitro

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Human bone cell cultures were established by maintaining collagenase-treated, bone fragments in low Ca++ medium. The resulting cell cultures exhibited a high level of alkaline phosphatase activity and produced a significant increase in intracellular cAMP when exposed to the 1–34 fragment of human parathyroid hormone. With continued culture, the cells formed a thick, extracellular matrix that mineralized when cultures were provided daily with normal levels of calcium, fresh ascorbic acid (50 μg/ml) and 10 mM β-glycerol phosphate. Biosynthetically, these cells produced type I collagen (without any type III collagen), and the bone-specific protein, osteonectin. In addition, the cells produced sulfated macromolecules electrophoretically identical to those positively identified as the bone proteoglycan in parallel cultures of fetal bovine bone cells. This technique provides a useful system for the study of osteoblast metabolismin vitro

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Doty SB, Schofield BH (1976) Enzyme histochemistry of bone and cartilage cells. Prog in Histochem and Cytochem 8:1–38

    CAS  Google Scholar 

  2. Peck WA, Carpenter J, Messinger K, DeBra D (1973) Cyclic 3′5′ adenosine monophosphate in isolated bone cells. Response to low concentrations of parathyroid hormone. Endocrinology 92:692–697

    Article  CAS  PubMed  Google Scholar 

  3. Eyre DS (1980) Collagen: Molecular diversity in the body's protein scaffold. Science 207:1315–1322

    Article  CAS  PubMed  Google Scholar 

  4. Bornstein P, Sage H (1980) Structurally distinct collagen types. Ann Rev Biochem 49:957–1003

    Article  CAS  PubMed  Google Scholar 

  5. Herring GM (1972) In: Bourne GH (ed) The biochemistry and physiology of bone Vol 1. Academic, New York, pp 127–189

    Chapter  Google Scholar 

  6. Hauschka PV, Lian JB, Gallop PM (1975) Direct identification of the calcium-binding amino acid, γ-carboxyglutamate, in mineralized tissue. Proc Nat Acad Sci USA 72:3925–3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Price PA, Otsuka AS, Poser JW, Kirstaponis J, Raman J (1976) Characterization of γ-carboxyglutamic acid containing protein from bone. Proc Nat Acad Sci USA 73:1447–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Termine JD, Belcourt AB, Conn KM, Kleinman KM (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256:10403–10408

    CAS  PubMed  Google Scholar 

  9. Fisher LW, Termine JD, Dejter D, Whitson SW, Conn KM, Yanagashita M, Kimura JH, Hascall VC, Kleinman HK, Hassell JR, Nilsson B (1983) Proteoglycans of developing bone. J Biol Chem 258:6588–6594

    CAS  PubMed  Google Scholar 

  10. Fisher LW, Whitson SW, Avioli LA, Termine JD (1983) Matrix sialoprotein of developing bone. J Biol Chem 258:12723–12727

    CAS  PubMed  Google Scholar 

  11. Majeska RJ, Rodan SB, Rodan GA (1978) Maintenance of parathyroid response in clonal rat osteosarcoma lines. Exp Cell Res 111:465–468

    Article  CAS  PubMed  Google Scholar 

  12. Sudo H, Kodama H-A, Amagai Y, Yamamota S, Kasai S (1983)In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191–198

    Article  CAS  PubMed  Google Scholar 

  13. Williams DC, Boder GB, Toomey RE, Paul DC, Hillman CC Jr, King KL, Van Frank RM, Johnston CC Jr (1980) Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif Tissue Int 30:233–246

    Article  CAS  PubMed  Google Scholar 

  14. Peck WA, Birge SJ, Fedak SA (1964) Bone cells: Biochemical and biological studies after enzymatic isolation. Science 146:1476

    Article  CAS  PubMed  Google Scholar 

  15. Wong GL, Cohn DV (1975) Target cells in bone for parathormone and calcitonin are different: Enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces. Proc Nat Acad Sci USA 72:3167–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jones SJ, Boyde A (1977) The migration of osteoblasts. Cell Tissue Res 184:179–193

    Article  CAS  PubMed  Google Scholar 

  17. Ecarot-Charrier B, Glorieux FH, van der Rest M, Pereira G (1983) Osteoblasts isolated from mouse calvaria initiate matrix mineralization. J Cell Biol 96:639–643

    Article  CAS  PubMed  Google Scholar 

  18. Bard DR, Dickens MJ, Smith AU, Zarek JM (1972) Isolation of living cells from mature mammlian bone. Nature 236:314

    Article  CAS  PubMed  Google Scholar 

  19. Howard GA, Turner RT, Sherrard DJ, Baylink DJ (1981) Human bone cells in culture metabolize 25-hydroxyvitamin D3 to 1,25-dihydroxy vitamin D3 and 24,25-dihydroxy vitamin D3. J Biol Chem 256:7738–7740

    CAS  PubMed  Google Scholar 

  20. Wergedal JE, Baylink DJ (1984) Characterization of cells isolated and cultured from human bones. Proc Soc Exp Biol and Med 176:27–31

    Article  Google Scholar 

  21. Mills BG, Singer FR, Weiner LP, Holst PA (1979) Long-term culture of cells from bone affected by Paget's disease. Calcif Tissue Int 29:79–87

    Article  CAS  PubMed  Google Scholar 

  22. Maurizi M, Binaglia L, Donti E, Ottaviani F, Pauldetti G, Venti Donti G (1983) Morphological and functional characteristics of human temporal-bone cells cultures. Cell Tissue Res 229:505–513

    Article  CAS  PubMed  Google Scholar 

  23. Gallagher JA, Beresford JN, Poser J, Coulton LA, Kanis JA, Russell RGG (1982) Human bone cell cultures—studies of steroid action. Calcif Tissue Int 34(suppl):33

    Google Scholar 

  24. Beresford JN, Gallagher, JA, Poser JW, Russell RGG (1984) Production of osteocalcin by human bone cells in vitro. Effects of 1,25-(OH)2D3, 24,25(OH)2D3, parathyroid hormone, and glucocorticoids. Metab Bone Dis Rel Res 5:229–234

    Article  CAS  Google Scholar 

  25. MacDonald BR, Gallagher JA, Ahnfelt-Ronne I, Beresford JN, Gowen M, Russell RGG (1984) Effects of bovine parathyroid hormone and 1,25-dihydroxyvitamin D3 on the production of prostaglandins by cells derived from human bone. FEBS Lett 169:49–52

    Article  CAS  PubMed  Google Scholar 

  26. Whitson SW, Harrison W, Dunlap MK, Bowers DE Jr, Fisher LW, Gehron Robey P, Termine JD (1984) Fetal bovine bone cells synthesize bone-specific matrix proteins. J Cell Biol 99:607–614

    Article  CAS  PubMed  Google Scholar 

  27. Binderman I, Somjen D (1982) Serum factors and calcium modulates growth of osteoblast-like cells in culture. In: Silbermann M, Slavkin HC (eds) Current advances in skeletogenesis: Development, biomineralization, mediators, and metabolic bone diseases. Elsevier Science Pub. Co. Amsterdam, pp 338–342

    Google Scholar 

  28. Rosenquist TH, Slavin BG, Burnic S (1971) Pearson silvergelatin method for light microscopy of 0.2–0.5 μ plastic sections. Stain Tech 46:253–257

    Article  CAS  Google Scholar 

  29. Eastman ST, Aurbach GD (1982) Determination of plasma cyclic AMP with automated radioimmunoassay system (Gamma-Flo). J Cyclic Nucleotide Res 8:297–307

    CAS  PubMed  Google Scholar 

  30. Gehron Robey P, Kirshner JA, Conn KM, Termine JD (1985) Biosynthesis of non-collagenous proteins by bone cellsin vitro. In: Ornoy A, Harrell A, Sela J (eds) Current advances in skeletogenesis. Elsevier Science Pub. Co., Amsterdam, pp 461–466

    Google Scholar 

  31. Tenenbaum H, Heersche JMN (1982) Differentiation of osteoblasts and formation of mineralized bonein vitro. Calcif Tissue Int 34:76–79

    Article  CAS  PubMed  Google Scholar 

  32. Rowe DW, Shapiro JR (1982) Biochemical features of cultured skin fibroblasts from patients with Osteogenesis Imperfecta. In: Akeson W, Bornstein P, Glimcher M (eds) Heritable disorders of connective tissue. C.V. Mosby, St. Louis, pp 269–282

    Google Scholar 

  33. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature (London) 227:680–685

    Article  CAS  Google Scholar 

  34. Sykes BC, Puddle B, Francis M, Smith R (1976) The estimation of two collagens from human dermis by interrupted gel electrophoresis. Biochem Biophys Res Comm 72:1472–1480

    Article  CAS  PubMed  Google Scholar 

  35. Bumol IF, Reisfeld RA (1982) Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human myeloma cells. Proc Nat Acad Sci USA 79:1245–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bonner WM, Laskey RA (1974) A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46:83–88

    Article  CAS  PubMed  Google Scholar 

  37. Goldring SR, Dayer JM, Russell RGG, Mankin HJ, Krane SM (1978) Response to hormones of cells cultured from giant tumors of bone. J Clin Endocrinol 46:425–433

    Article  CAS  Google Scholar 

  38. Beresford JN, MacDonald BR, Russell RGG, Gallagher JA (1984) Parathyroid hormone responses in cultured human bone cells. Calcif Tissue Int 36(suppl):44

    Google Scholar 

  39. Binderman I, Duksin D, Harell A, Katui E, Sachs L (1974) Formation of bone tissue in culture from isolated bone cells. J Cell Biol 61:427–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nijweide PJ, van Iperen-van Gent AS, Kawailarang-de Hass EWM, van der Plas A, Wassenaar AM (1982) Bone formation and calcification by isolated osteoblast-like cells. J Cell Biol 93:318–323

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robey, P.G., Termine, J.D. Human bone cellsin vitro . Calcif Tissue Int 37, 453–460 (1985). https://doi.org/10.1007/BF02557826

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02557826

Key words

Navigation