Skip to main content
Log in

A simple and rapid TAR-dependent in vitro transcription assay using T cell nuclear extracts and synthetictat1-86 protein

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

A ‘G-less’ cassette was cloned downstream of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) to facilitate rapid identification of authentic LTR-directed transcription in T cell nuclear extracts. Despite a high constitutive level of transcription, addition of chemically synthesized full-length HIV-1bru tat (amino acids 1–86) stimulated transcription 3-fold but only if the template included the TAR region of the LTR. Suppression of basal transcription in T cell nuclear extracts by sodium citrate increased the relative level oftat stimulation, but neither potassium chloride nor histone H1 had an effect. A mutant synthetictat polypeptide, lacking residues 22–32 in the cysteine-rich domain, was inactive in uptake assays and failed to stimulate transcription. Short basic peptides that competed full-lengthtat from complexes with TAR RNA also inhibitedtat stimulation of transcription, whereas short basic peptide unable to bind TAR or competetat from complexes were also unable to inhibittat stimulation of transcription. These data confirm that active HIV-1tat must first interact with TAR RNA via basic amino acid residues in order to stimulate transcription of downstream sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengal E, Aloni Y. Transcriptional elongation by purified RNA polymerase II is blocked at the transactivation response region of human immunodeficiency virus in vitro. J Virol 65:4910–4918;1991.

    Google Scholar 

  2. Berkhout B, Jeang KT. Transactivation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting-responsive hairpin: A quantitative analysis. J Virol 63:5501–5504;1989.

    Google Scholar 

  3. Berkhout B, Gatignol A, Rabson AB, Jeang KT. TAR-independent activation of the HIV-1 LTR: Evidence thattat requires specific regions of the promoter. Cell 62:757–767;1990.

    Google Scholar 

  4. Berkhout B, Silverman RH, Jeang KT. Tat transactivates the human immunodeficiency virus through a nascent RNA target. Cell 59:273–282;1989.

    Google Scholar 

  5. Bohan CA, Kashanchi F, Ensoli B, Buonaguro L, Boris-Lawrie KA, Brady JN. Analysis oftat transactivation of human immunodeficiency virus transcription in vitro. Gene Expr 2:391–407;1992.

    Google Scholar 

  6. Brake DA, Debouck C, Biesecker G. Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein,tat. J Cell Biol 111:1275–1281;1990.

    Google Scholar 

  7. Calnan BJ, Biancalana S, Hudson D, Frankel A. Analysis of arginine rich peptides from the HIVtat protein reveals unusual features of RNA-protein recognition. Genes Dev 5:201–210;1991.

    Google Scholar 

  8. Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel A. Arginine mediated RNA recognition: The arginine fork. Science 252:1167–1171;1991.

    Google Scholar 

  9. Carroll R, Martarano L, Derse D. Identification of lentivirustat functional domains through generation of equine infectious anemia virus/human immunodeficiency virus type 1tat gene chimeras. J Virol 65:3460–3467;1991.

    Google Scholar 

  10. Clark-Lewis I, Moser B, Walz A, Baggiolini M, Scott GJ, Aebersold R. Chemical synthesis, purification, and characterization of two inflammatory proteins, neutrophil activating peptidel (interleukin-8). Biochemistry 30:3128–3135;1991.

    Google Scholar 

  11. Colvin RA, Garcia-Blanco MA. Unusual structure of the human immunodeficiency virus type 1 transactivation response element. J Virol 66:930–935;1992.

    Google Scholar 

  12. Cordingley MG, Lafemia RL, Callahan PL, Condra JH, Sardana VV, Graham DJ, Nguyen TM, Legrow K, Gotlib L, Schlabach AJ, Colonna RJ. Sequence specific interaction oftat protein andtat peptides with the transactivation responsive sequence element of human immunodeficiency virus type 1 in vitro. Proc Natl Sci USA 87:8985–8989;1990.

    Google Scholar 

  13. Croston GE, Kerrigan LA, Lira LM, Marshak DR, Kadonaga JT. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251:643–649;1991.

    Google Scholar 

  14. Cullen BR. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46:973–982;1986.

    Google Scholar 

  15. Delling U, Roy S, Sumner-Smith M, Barnett R, Reid L, Rosen CA, Sonenberg N. The number of positively charged amino acids in the basic domain oftat is critical for trans-activation and complex formation with TAR RNA. Proc Natl Acad Sci USA 88:6234–6238;1991.

    Google Scholar 

  16. Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489;1983.

    Google Scholar 

  17. Dingwall C, Ernberg I, Gait MJ, Green SM, Heaphy S, Karn J, Lowe AD, Singh M, Skinner MA, Valerio R. Human immunodeficiency 1tat protein binds trans-activation-response region (TAR) RNA in vitro. Proc Natl Acad Sci USA 86:6925–6929;1989.

    Google Scholar 

  18. Dingwall C, Ernberg I, Gait MJ, Green SM, Heaphy S, Karn J, Lowe AD, Singh M, Skinner MA. HIV-1tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. EMBO J 9:4145–4153;1990.

    Google Scholar 

  19. Feng S, Holland EC. HIV-1tat transactivation requires the loop sequence withintar. Nature 334:165–167;1988.

    Google Scholar 

  20. Flanagan WM, Crabtree GR. In vitro transcription faithfully reflecting T-cell activation requirements. J Biol Chem 256:1183–1192;1991.

    Google Scholar 

  21. Frankel AD, Bredt DS, Pabo CO. Tat protein from human immunodeficiency virus forms a metal linked dimer. Science 240:70–73;1988.

    Google Scholar 

  22. Frankel AD, Chen L, Cotter RJ, Pabo CO. Dimerization of thetat protein from human immunodeficiency virus: A cysteine rich peptide mimics the normal metal-linked dimer interface. Proc Natl Acad Sci USA 85:6297–6300;1988.

    Google Scholar 

  23. Graeble MA, Churcher MJ, Lowe AD, Gait MJ, Karn J. Human immunodeficiency virus type 1 transactivator protein,tat, stimulates transcriptional read-through of distal terminator sequences in vitro. Proc Natl Acad Sci USA 90:6184–6188;1993.

    Google Scholar 

  24. Harper JW, Logsdon NJ. Refolded HIV-1tat protein protects both bulge and loop nucleotides in TAR RNA from ribonucleolytic cleavage. Biochemistry 30:8060–8066;1991.

    Google Scholar 

  25. Harrich D, Garcia J, Mitsuyasu R, Gaynor R. TAR independent activation of the human immunodeficiency virus in phorbol ester stimulated T-lymphocytes. EMBO J 9:4417–4423;1990.

    Google Scholar 

  26. Haseltine WA. Regulation of HIV-1 replication bytat andrev. In: Haseltine WA, Wong-Staal F, eds. Genetic Structure and Regulation of HIV. New York, Raven, 1–42;1991.

    Google Scholar 

  27. Hauber J, Cullen BR. Mutational analysis of the trans-activation-response region of the human immunodeficiency virus type 1 long terminal repeat. J Virol 62:673–679;1988.

    Google Scholar 

  28. Huang RCC, Chow WY, Li C, Yao CW, Chen MC, Walls LC, Kung HJ. Regulation of HIV promoter activities in human embryonal carcinoma cells, NTERA-2. In: Papas TS, ed. Gene Regulation and AIDS. New York, Raven, 147–160;1990.

    Google Scholar 

  29. Jacobovits A, Smith DH, Jacobovits EB, Capon DJ. A discrete element 3′ of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV-1 transactivator. Mol Cell Biol 8:2555–2561;1988.

    Google Scholar 

  30. Jeang KT, Chang YN, Berkhout B, Hammarskjold ML, Rekosh D. Regulation of HIV expression: Mechanism of action oftat andrev. AIDS 5(suppl 2):3–14;1991.

    Google Scholar 

  31. Jeyapaul J, Reddy MR, Khan SK. Activity of synthetictat peptides in human immunodeficiency virus type 1 long terminal repeat-promoted transcription in a cell-free system. Proc Natl Acad Sci USA 87:7030–7034;1990.

    Google Scholar 

  32. Kamine J, Loewenstein P, Green M. Mapping of HIV-1tat protein sequences required for binding to Tar RNA. Virology 182:570–577;1991.

    Google Scholar 

  33. Kao SY, Calman AF, Luciw PA, Peterlin BM. Anti-termination of transcription within the long terminal repeat of HIV-1 bytat gene product. Nature 330:489–493;1987.

    Google Scholar 

  34. Kato H, Sumimoto H, Pognonec P, Chen CW, Rosen CA, Roeder RG. HIV-1tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Genes Dev 6:655–666;1992.

    Google Scholar 

  35. Kornberg RD, Lorch Y. Irresistible force meets immovable object: Transcription and the nucleosome. Cell 67:833–836;1991.

    Google Scholar 

  36. Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G. Multiple functional domains of Tat, the transactivator of HIV-1, defined by mutational analysis. Nucleic Acid Res 17:3551–3556;1989.

    Google Scholar 

  37. Laspia MF, Rice AP, Mathews MB. HIV-1 Tat protein increases transcriptional initiation and stabilises elongation. Cell 59:283–292;1989.

    Google Scholar 

  38. Laspia MF, Rice AP, Mathews MB. Synergy between HIV-1tat and adenovirus E1A is due to stabilisation of transcriptional elongation. Genes Dev 4:2397–2408;1990.

    Google Scholar 

  39. Laspia MF, Wendel P, Mathews MB. HIV-1tat overcomes inefficient transcriptional elongation in vitro. J Mol Biol 232:732–746;1993.

    Google Scholar 

  40. Lee VHL, ed. Peptide and Protein Drug Delivery. New York, Marcel Dekker; 1991.

    Google Scholar 

  41. Lubon H, Ghazal P, Nelson JA, Henninghausen L. Cell-specific activity of the human immunodeficiency virus enhancer repeat in vitro. AIDS Res Hum Retroviruses 4:381–391;1988.

    Google Scholar 

  42. Maire P, Wuarin J, Schibler U. The role of cis-acting promoter elements in tissue-specific albumin gene expression. Science 244:343–346;1989.

    Google Scholar 

  43. Manley JL, Fire A, Samuels M, Sharp PA. In vitro transcription: Whole cell extracts. Methods Enzymol 101:368–382;1983.

    Google Scholar 

  44. Marciniak RA, Calnan BJ, Frankel AD, Sharp PA. HIV-1tat protein transactivates transcription in vitro. Cell 63:791–802;1990.

    Google Scholar 

  45. Marciniak RA, Garcia-Blanco MA, Sharp PA. Identification and characterization of a HeLa nuclear protein that specifically binds to the transactivation-response (TAR) element of human immunodeficiency virus. Proc Natl Acad Sci USA 87:3624–3628;1990.

    Google Scholar 

  46. Marciniak RA, Sharp PA. HIV-1tat protein promotes formation of more processive elongation complexes. EMBO J 10:4189–4196;1991.

    Google Scholar 

  47. Meusing MA, Smith DH, Capon DJ. Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48:691–701;1987.

    Google Scholar 

  48. Okamoto T, Wong-Staal F. Demonstration of virus-specific transcriptional activator(s) in cells infected with HTLV-III by an in vitro cell-free system. Cell 47:29–35;1986.

    Google Scholar 

  49. Ptashne M, Gann AAF. Activators and targets. Nature 346:329–331;1990.

    Google Scholar 

  50. Puglisi JD, Tan R, Calnan BJ, Frankel AD, Williamson JR. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 257:76–80;1992.

    Google Scholar 

  51. Rappaport J, Lee SJ, Khalili K, Wong-Staal F. The acidic amino terminal region of the HIV-1tat protein constitutes an essential activating domain. New Biol 1:101–110;1989.

    Google Scholar 

  52. Rice AP, Mathews M. Transcriptional but not translational regulation of HIV-1 by thetat gene product. Nature 332:551–553;1988.

    Google Scholar 

  53. Roberts CM, Blair ED. Exploitation of a rapid and sensitive assay to characterise transactivation of the HIV-1 LTR. Antiviral Chem Chemother 1:139–148;1990.

    Google Scholar 

  54. Rosen CA, Sodroski JG, Haseltine WA. The location of cis-acting regulatory sequences in the human T-cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41:813–823;1985.

    Google Scholar 

  55. Roy S, Delling U, Chen CH, Rosen CA, Sonenberg N. A bulge structure in HIV-1 TAR RNA is required fortat binding andtat-mediated trans-activation. Genes Dev 4:1365–1373;1990.

    Google Scholar 

  56. Sawadogo M, Roeder RG. Factors involved in specific transcription by human RNA polymerase II: Analysis by a rapid and quantitative in vitro assay. Proc Natl Acad Sci USA 82:4394–4398;1985.

    Google Scholar 

  57. Selby MJ, Bain ES, Luciw PA, Peterlin BM. Structure, sequence and position of the stem loop intar determine transcriptional elongation bytat through the HIV-1 long terminal repeat. Genes Dev 3:547–558;1989.

    Google Scholar 

  58. Selby MJ, Peterlin BM. Transactivation by HIV-1 Tat via a heterologous RNA binding protein. Cell 62:769–776;1990.

    Google Scholar 

  59. Shapiro DJ, Sharp PA, Wahli W, Keller MJ. A high-efficiency HeLa cell nuclear transcription extract. DNA 7:47–55;1988.

    Google Scholar 

  60. Sharp PA. TFIIB or not TFIIB? Nature 351:16–18;1991.

    Google Scholar 

  61. Sharp PA, Marciniak RA. HIV TAR: An RNA enhancer? Cell 59:229–230;1989.

    Google Scholar 

  62. Sheline CT, Milocco LH, Jones KA. Two distinct nuclear transcription factors recognize loop and bulge residues of the HIV-1 TAR RNA hairpin. Genes Dev 5:2508–2520;1991.

    Google Scholar 

  63. Southgate C, Zapp ML, Green ML. Activation of HIV-1 transcription of HIV-1tat protein tethered to nascent RNA through another protein. Nature 345:640–642;1990.

    Google Scholar 

  64. Sumner-Smith M, Roy S, Barnett R, Reid LS, Kuperman R, Delling U, Sonenberg N. Critical chemical features in trans-acting responsive RNA are required for interaction with human immunodeficiency virus type 1tat protein. J Virol 65:5196–5202;1991.

    Google Scholar 

  65. Tiley L, Brown PH, Cullen BR. Does the human immunodeficiency virustat trans-activator contain a discrete activation domain? Virology 178:560–567;1990.

    Google Scholar 

  66. Weeks KM, Ampe C, Schulz SC, Steitz TA, Crothers DM. Fragments of HIV-1tat protein specifically bind TAR RNA. Science 249:1281–1285;1990.

    Google Scholar 

  67. Weeks KM, Crothers DM. RNA recognition bytat-derived peptides: Interactions in the major groove? Cell 66:577–588;1991.

    Google Scholar 

  68. Wright S. Regulation of eukaryotic gene expression by transcriptional attenuation. Mol Biol Cell 4:661–668;1993.

    Google Scholar 

  69. Wu F, Garcia J, Sigman D, Gaynor R. Tat regulates binding of human immunodeficiency virus transactivating region RNA loop-binding protein TRP-185. Genes Dev 5:2128–2140;1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blair, E.D., Roberts, C.M. & Clark-Lewis, I. A simple and rapid TAR-dependent in vitro transcription assay using T cell nuclear extracts and synthetictat1-86 protein. J Biomed Sci 2, 136–145 (1995). https://doi.org/10.1007/BF02253064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253064

Key Words

Navigation