Skip to main content
Log in

The uptake mechanisms of inflammation-and infection-localizing agents

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Over the past 30 years, a wide variety of radiopharmaceuticals have been proposed for the scintigraphic detection of inflammatory and infectious disease. All radiopharmaceuticals yield a functional image of a process placed somewhere in the cascade of reactions in inflammation, this being the common pathway of response to tissue injury. This paper discusses relevant aspects of the biodistribution, in vivo kinetics and mechanisms of uptake of both clinically used and experimental radiopharmaceuticals that have been proposed for the scintigraphic detection of focal inflammation and infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fantone JC, Ward PA. In: Rubin E, Farber JL eds.Pathology. Philadelphia: Lippincott; 1994: 33–66.

    Google Scholar 

  2. Hogg N, Berlin C. Structure and function of adhesion receptors in leucocyte trafficking.Immunol Today 1995; 16: 327–330.

    Google Scholar 

  3. Lavender JP; Lowe J, Barker JR, Burn JI, Chaudri MA. Gallium-67 citrate scanning in neoplastic and inflammatory lesions.Br J Radiol 1971; 44: 361–366.

    Google Scholar 

  4. Ito Y, Okuyama S, Awano T, Takahashi K, Sato T, Kanno I. Diagnostic evaluation of Ga-67 scanning of lung cancer and other diseases.Radiology 1971; 101: 355–362.

    Google Scholar 

  5. Tzen KY, Oster ZH, Wagner HN, Tsan ME Role of iron-binding proteins and enhanced capillary permeability on the accumulation of gallium-67.J Nucl Med 1980; 21: 31–35.

    Google Scholar 

  6. Weiner R, Hoffer PB, Thakur ML. Lactoferrin: its role as a Ga-67-binding protein in polymorphonuclear leucocytes.J Nucl Med 1981; 22: 32–37.

    Google Scholar 

  7. Tsan ME Mechanism of gallium-67 accumulation in inflammatory lesions.J Nucl Med 1985;26: 88–92.

    Google Scholar 

  8. Bekerman C, Bitran J. Gallium-67 scanning in the clinical evaluation of human immunodeficiency virus infection: indications and limitations.Semin Nucl Med 1988; 18: 273–286.

    Google Scholar 

  9. McAfee JG, Thakur ML. Survey of radioactive agents for the in vitro labelling of phagocytic leucocytes. I. Soluble agents. II. Particles.J Nucl Med 1976; 17: 480–1192.

    Google Scholar 

  10. Peters AM, Danpure HJ, Osman S, et al. Preliminary clinical experience with Tc-99m-HM-PAO for labelling leucocytes and imaging infection.Lancet 1986; II: 945–949.

    Google Scholar 

  11. Saverymuttu SH, Peters AM, Danpure HJ, Reavy HJ, Osman S, Lavender JP. Lung transit of In-111-labelled granulocytes. Relationship to labelling techniques.Scand J Haematol 1983; 30: 151–160.

    Google Scholar 

  12. Mackay CR, Imhof BA. Cell adhesion in the immune system.Immunol Today 1993; 14: 99–102.

    Google Scholar 

  13. Coleman RE. Radiolabelled leucocytes. In: Freeman LM, Weissmann HS, eds.Nuclear medicine annual 1982. New York: Raven Press; 1982: 119–141.

    Google Scholar 

  14. McAfee JG, Gagne G, Subramanian G, Schneider RF. The localization of indium-111-leucocytes, gallium-67, polyclonal IgG and other radioactive agents in acute focal inflammatory lesions.J Nucl Med 1991; 32: 2126–2131.

    Google Scholar 

  15. Mock BH, English D. Leucocyte labelling with technetium-99m tin colloids.J Nucl Med 1987; 28: 1471–1477.

    Google Scholar 

  16. Crommelin DJA, Schreier H. Liposomes. In: Kreuter J, ed. Colloidal drug delivery systems. New York: Marcel Dekker; 1994: 73–89.

    Google Scholar 

  17. Boerman OC, Oyen WJG, van Bloois L, van der Meer JWM, Koenders EB, Claessens RAMJ, Crommelin DJA, Corstens FHM, Storm G. Optimization of the formulation of PEG-liposomes to image focal infection: effects of size and circulatory half-life.

  18. Huang SK, Stauffer PR, Hong K, Guo JW, Phillips TL, Huang A, Papahadjopoulos D. Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes.Cancer Res 1994; 54: 2186–2191.

    Google Scholar 

  19. Love WG, Amos N, Kellaway IW, Williams BD. Specific accumulation of cholesterol-rich liposomes in the inflammatory tissue of rats with adjuvant arthritis.Ann Rheum Dis 1990; 49: 611–614.

    Google Scholar 

  20. Goins B, Klipper R, Rudolph AS, Cliff RO, Blumhardt R, Phillips WT. Biodistribution and imaging studies of technetium-99m-labelled liposomes in rats with focal infection.J Nucl Med 1993; 34: 2160–2168.

    Google Scholar 

  21. Boerman OC, Storm G, Oyen WJG, van Bloois L, van der Meer JWM, Claessens RAMJ, Crommelin DJA, Corstens FHM. Sterically stabilized liposomes labelled with indium 111 to image focal infection in rats.J Nucl Med 1995; 35: 1639–1644.

    Google Scholar 

  22. Oyen WJG, Boerman OC, Storm G, van Bloois L, Koenders EB, Claessens RAMJ, Perenboom RM, Crommelin DJA, van der Meer JWM, Corstens FHM. Tc-99m labelled stealth liposomes to detect infection and inflammation.J Nucl Med 1996; in press.

  23. Allen TM, Hansen C, Martin F, Redemann C, Yan-Young A. Liposomes containing synthetic lipid derivatives of polyethylene glycol show prolonged circulation half-lives in vivo.Biochim Biophys Acta 1991; 1066: 29–36.

    Google Scholar 

  24. Rubin RH, Young LS, Hansen P, et al. Specific and nonspecific imaging of localized Fisher immunotype 1Pseudomonas aeruginosa infection with radiolabelled monoclonal antibody.J Nucl Med 1988; 29: 651–656.

    Google Scholar 

  25. Fischman AJ, Wilkinson R, Khaw BA, et al. Imaging of localized bacterial infections with radiolabelled nonspecific antibody fragments.J Nucl Med 1988; 29: 887.

    Google Scholar 

  26. Fischman AJ, Rubin RH, White JA, et al. Localization of Fc and Fab fragments of nonspecific polyclonal IgG at focal sites of inflammation.J Nucl Med 1990; 31: 1199–1205.

    Google Scholar 

  27. Calame W, Feitsma HI, Ensing GJ, Arndt JW, van Furth R, Pauwels EKJ. Binding of Tc-99m-labelled polyclonal human immunoglobulin to bacteria as a mechanism for scintigraphic detection of infection.Eur J Nucl Med 1991; 18: 396–400.

    Google Scholar 

  28. Calame W, Welling M, Feitsma HI, Ensing GJ, Pauwels EKJ. Improved detection of a staphylococcal infection by monomeric and protein A-purified polyclonal human immunoglobulin.Eur J Nucl Med 1993; 20: 490–494.

    Google Scholar 

  29. Welling M, Feitsma HI, Calame W, Fusing GJ, Goedemans W, Pauwels EKJ. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection.Eur J Nucl Med 1994; 21: 1135–1140.

    Google Scholar 

  30. Morrel EM, Tompkins RG, Fischman AJ, et al. Autoradiographic method for quantitation of radiolabelled proteins in tissues using indium-111.J Nucl Med 1989; 30: 1538–1545.

    Google Scholar 

  31. Fischman AJ, Fucello AJ, Pellegrino-Gensey JL, et al. Effect of carbohydrate modification on the localization of human polyclonal IgG at focal sites of infection.J Nucl Med 1992; 33: 1383–1389.

    Google Scholar 

  32. Juweid M, Strauss HW, Yaoita H, Rubin RH, Fischman AJ. Accumulation of immunoglobulin G at sites of focal infection.Eur J Nucl Med 1992, 19: 159–165.

    Google Scholar 

  33. Oyen WJG, Claessens RAMJ, Raemaekers JMM, de Pauw BE, van der Meer JWM, Corstens FHM. Diagnosing infection in febrile granulocytopenic patients with indium-111 labelled human IgG.J Clin Oncol 1992; 10: 61–68.

    Google Scholar 

  34. Duncan JR, Welch MJ. Intracellular metabolism of indium-111-DTPA-labelled receptor proteins.J Nucl Med 1993; 34: 1728–1738.

    Google Scholar 

  35. Claessens RAMJ, Koenders EB, Boerman OC, Oyen WIG, Borm GF, van der Meer JWM, Corstens FHM. Dissociation of indium from In-111 labelled diethylene triamine penta-acetic acid conjugated nonspecific polyclonal immunoglobulin G in inflammatory foci.Eur J Nucl Med 1995; 22: 212–219.

    Google Scholar 

  36. Paganelli G, Malcovatti M, Fazio F. Monoclonal antibody pretargetting techniques for tumour localization: the avidin-biotin system.Nucl Med Commun 1991; 12: 211–234.

    Google Scholar 

  37. Rusckowski M, Fritz B, Hnatowich DJ. Localization of infection using streptavidin and biotin: an alternative to nonspecific polyclonal immunoglobulin.J Nucl Med 1992; 33: 1810–1815.

    Google Scholar 

  38. Oyen WJG, Boerman OC, Kranenborg MHGC, Oosterwijk E, Koenders EB, Claessens RAMJ, van der Meer JWM, Corstens FHM. Rapid imaging of experimental infection with Tc-99m-DTPA after “cold” anti-DTPA monoclonal antibody priming [abstract].J Nucl Med 1995: 36: 207P.

  39. Becker W, Borst U, Fischbach W, Pasurka B, Schafer R, Borner W. Kinetic data of in vivo labelled granulocytes in humans with a murine Tc-99m-labelled monoclonal antibody.Eur J Nucl Med 1989; 15: 361–366.

    Google Scholar 

  40. Becker W, Repp R, Hansen HJ, Goldenberg DM, Wolf F. Binding characteristics and kinetics of a new Tc-99m-antigranulocyte Fab′-fragment [abstract].Eur J Nucl Med 1995; 22: 728.

    Google Scholar 

  41. Thakur ML, Marcus CS, Hennemann P, et al. Tc-99m labelled monoclonal antibody in patients with inflammatory disease [abstract].Eur J Nucl Med 1991; 18: 594.

    Google Scholar 

  42. Keelan ET, Harrison AA, Chapman PT, Binns RM, Peters AM, Haskard DO. Imaging vascular endothelial activation: an approach using radiolabelled monoclonal antibodies against the endothelial cell adhesion molecule E-selectin.J Nucl Med 1994; 35: 276–281.

    Google Scholar 

  43. Jamar F, Chapman PT, Harrison AA, Binns RM, Haskard DO, Peters AM. Inflammatory arthritis: imaging of endothelial cell activation with an indium-111-labelled F(ab′)2 fragment of anti-E-selectin monoclonal antibody.Radiology 1995; 194: 843–850.

    Google Scholar 

  44. Jamar F, Chapman PT, Keelan ETM, Peters AM, Haskard DO. Imaging endothelial activation in inflammatory disorders [abstract].J Nucl Med 1995; 36: 24P.

    Google Scholar 

  45. Fischman AJ, Pike MC, Kroon D, et al. Imaging focal sites of bacterial infection in rats with indium-111-labelled chemotactic peptide analogs.J Nucl Med 1991; 32: 483–491.

    Google Scholar 

  46. Babich JW, Graham W, Barrow SA, et al. Technetium-99m-labelled chemotactic peptides: comparison with indium-lll-labelled white blood cells for localizing acute bacterial infection in the rabbit.J Nucl Med 1993; 34: 2176–2181

    Google Scholar 

  47. Fischman AJ, Babich JW, Rubin RH. Infection imaging with technetium-99m- labelled chemotactic peptide analogs.Semin Nucl Med 1994; 24: 154–168.

    Google Scholar 

  48. Solomon HF, Derlan CK, Beblavy M, et al. Focal infection imaging using an In-111 labelled antagonist chemotactic peptide [abstract].J Nucl Med 1994; 35: 45P.

    Google Scholar 

  49. Fischman AJ, Babich JW, Barrow SA, Graham W, Carter E, Tompkins RG, Rubin RH. Detection of acute bacterial infection within soft tissue injuries using a Tc-99m-labelled chemotactic peptide.J Trauma 1995; 38: 223–227.

    Google Scholar 

  50. Oppenheim JJ, Zachariae CO, Mukaida N, Matsushima K. Properties of the novel proinflammatory supergene “intercrine” cytokine family.Annu Rev Immunol 1991; 9: 617–648.

    Google Scholar 

  51. Dinarello CA. Interleukin-1 and interleukin-1 antagonism.Blood 1991; 77: 1627–1652.

    Google Scholar 

  52. Signore A, Chianelli M, Toscano A, et al. A radiopharmaceutical for imaging areas of lymphocytec infiltration: I-123-interleukin-2. Labelling procedure and animal studies.Nucl Med Commun 1992; 13: 713–722.

    Google Scholar 

  53. Signore A, Picarelli A, Maiuri E, et al. I-123-IL-2 for in vivo detection of activated lymphocytes: a scintigraphic and histological study in coeliac patients [abstract].Eur J Nucl Med 1995; 22: 794.

    Google Scholar 

  54. Signore A, Biancone L, Ferretti E, et al. I-123-labelled interleukin-2 in Crohn's disease: assessment of activity state and therapy follow-up [abstract].Eur J Nucl Med 1995; 22, 795.

    Google Scholar 

  55. Chianelli M, Signore A, Biassoni L, et al. In vivo imaging of autoimmunity by Tc-99m-interleukin-2 [abstract].Eur J Nucl Med 1995; 22: 780.

    Google Scholar 

  56. van der Laken CJ, Boerman OC, Oyen WJG, et al. Specific targetting of infectious foci with radioiodinated human recombinant interleukin-1 in an experimental model.Eur J Nucl Med 1995; 22: 1249–1257.

    Google Scholar 

  57. van der Laken CJ, Boerman OC, Oyen WJG, et al. Specific localization of radioiodinated human recombinant interleukin-1 in infectious foci.J Nucl Med 1995; 36: 229P.

    Google Scholar 

  58. Smith JW 2d, Urba WJ, Curti BD, et al. The toxic and hematologic effects of interleukin-1 alpha administered in a phase I trial to patients with advanced malignancies.J Clin Oncol 1992; 10: 1141–1152.

    Google Scholar 

  59. van der Laken CJ, Boerman OC, Oyen WJG, et al. Comparison of radiolabelled human recombinant interleukin-1 with its receptor antagonist in a model of infection.Eur J Nucl Med 1995; 22: 729.

    Google Scholar 

  60. Vinjamuri S, Hall AV, Solanki KK, et al. Tc-99m infecton, a bacterial specific infection imaging agent.Eur J Nucl Med 1995; 22: 916.

    Google Scholar 

  61. Hooper DC. Quinolone mode of action — new aspects.Drugs 1993; 45: 8–14.

    Google Scholar 

  62. Riesbeck K, Sigvardsson M, Leanderson T, Forsgren A. Superinduction of cytokine gene transcription by ciprofloxacin.J Immunol 1994; 153: 343–352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyen, W.J.G., Boerman, O.C., van der Laken, C.J. et al. The uptake mechanisms of inflammation-and infection-localizing agents. Eur J Nucl Med 23, 459–465 (1996). https://doi.org/10.1007/BF01247377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01247377

Key words

Navigation