Skip to main content

HLA-B27-Bound Peptide Repertoires: Their Nature, Origin and Pathogenetic Relevance

  • Chapter
Book cover Molecular Mechanisms of Spondyloarthropathies

Part of the book series: Advances in Experimental Medicine and Biology ((volume 649))

Abstract

Peptide binding is a central biological property of HLA-B27. The availability of HLA-B27 subtypes differentially associated to ankylosing spondylitis provides a unique tool to explore the relationship between peptide specificity and pathogenetic potential. Many studies have focused on defining the nature of subtype-bound repertoires, aiming to identify peptide features that may correlate with association to disease and to find constitutive self-ligands with sequence homology to microbial epitopes. These studies were pursued on the assumption that molecular mimicry between self and foreign ligands of HLA-B27 might trigger autoimmunity. A second level of involvement of peptide repertoires in the biology and immunopathology of HLA-B27 is through their critical influence on folding, maturation and cell surface expression and stability. Recent studies have emphasized the mechanisms of peptide loading and optimization, the interactions of HLA-B27 with other components of the peptide-loading complex and the contribution of these interactions to shaping HLA-B27-bound peptide repertoires. A novel, more comprehensive and integrative, view is emerging in which the peptide binding specificity is a critical determinant of the whole HLA-B27 biology. A proper understanding of the relationships between peptide specificity and other molecular and functional features of HLA-B27 should provide the key to unveiling its pathogenetic role in spondyloarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gomez P, Montserrat V, Marcilla M et al. B*2707 differs in peptide specificity from B*2705 and B*2704 as much as from HLA-B27 subtypes not associated to spondyloarthritis. Eur J Immunol 2006; 36:1867–81.

    Article  PubMed  CAS  Google Scholar 

  2. Varnavidou-Nicolaidou A, Karpasitou K, Georgiou D et al. HLA-B27 in the Greek Cypriot population: Distribution of subtypes in patients with ankylosing spondylitis and other HLA-B27-related diseases. The possible protective role of B*2707. Hum Immunol 2004; 65:1451–54.

    Article  PubMed  CAS  Google Scholar 

  3. Brown M, Jepson A, Young A et al. Spondyloarthritis in West Africa: evidence for a nonB27 protective effect. Ann Rheum Dis 1997; 56:68–70.

    Article  PubMed  CAS  Google Scholar 

  4. Lopez-Larrea C, Sujirachato K, Mehra NK et al. HLA-B27 subtypes in Asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens 1995; 45:169–76.

    Article  PubMed  CAS  Google Scholar 

  5. Ren EC, Koh WH, Sim D et al. Possible protective role of HLA-B*2706 for ankylosing spondylitis. Tissue Antigens 1997; 49:67–69.

    Article  PubMed  CAS  Google Scholar 

  6. Nasution AR, Mardjuadi A, Kunmartini S et al. HLA-B27 subtypes positively and negatively associated with spondyloarthropathy. J Rheumatol 1997; 24:1111–14.

    PubMed  CAS  Google Scholar 

  7. D’Amato M, Fiorillo MT, Carcassi C et al. Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis. Eur J Immunol 1995; 25:3199–201.

    Article  PubMed  Google Scholar 

  8. Paladini F, Taccari E, Fiorillo MT et al. Distribution of HLA-B27 subtypes in Sardinia and continental Italy and their association with spondylarthropathies. Arthritis Rheum 2005; 52:3319–21.

    Article  PubMed  CAS  Google Scholar 

  9. Fiorillo MT, Cauli A, Carcassi C et al. Two distinctive HLA haplotypes harbor the B27 alleles negatively or positively associated with ankylosing spondylitis in Sardinia: implications for disease pathogenesis. Arthritis Rheum 2003; 48:1385–89.

    Article  PubMed  CAS  Google Scholar 

  10. Cascino I, Paladini F, Belfiore F et al. Identification of previously unrecognized predisposing factors for ankylosing spondylitis from analysis of HLA-B27 extended haplotypes in Sardinia. Arthritis Rheum 2007; 56:2640–51.

    Article  PubMed  CAS  Google Scholar 

  11. Olivieri I, Padula A, Cianco G et al. The HLA-B*2709 subtype in a patient with undifferentiated spondarthritis. Ann Rheum Dis 2000; 59:654–55.

    Article  PubMed  CAS  Google Scholar 

  12. Olivieri I, Ciancio G, Padula A et al. The HLA-B*2709 subtype confers susceptibility to spondylarthropathy. Arthritis Rheum 2002; 46:553–54.

    Article  PubMed  Google Scholar 

  13. Cauli A, Vacca A, Mameli A et al. A Sardinian patient with ankylosing spondylitis and HLA-B*2709 co-occuring with HLA-B*1403. Arthritis Rheum 2007; 56:2807–09.

    Article  PubMed  Google Scholar 

  14. Olivieri I, D’Angelo S, Scarano E et al. The HLA-B*2709 subtype in a woman with early ankylosing spondylitis. Arthritis Rheum 2007; 56:2805–07.

    Article  PubMed  Google Scholar 

  15. Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today 1990; 11:137–42.

    Article  PubMed  CAS  Google Scholar 

  16. Ramos M, Paradela A, Vazquez M et al. Differential association of HLA-B*2705 and B*2709 to ankylosing spondylitis correlates with limited peptide subsets but not with altered cell surface stability. J Biol Chem 2002; 277:28749–56.

    Article  PubMed  CAS  Google Scholar 

  17. Jardetzky TS, Lane WS, Robinson RA et al. Identification of self peptides bound to purified HLA-B27. Nature 1991; 353:326–29.

    Article  PubMed  CAS  Google Scholar 

  18. Villadangos JA, Galocha B, Garcia F et al. Modulation of peptide binding by HLA-B27 polymorphism in pockets A and B and peptide specificity of B*2703. Eur J Immunol 1995; 25:2370–77.

    Article  PubMed  CAS  Google Scholar 

  19. Madden DR, Gorga JC, Strominger JL et al. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature 1991; 353:321–25.

    Article  PubMed  CAS  Google Scholar 

  20. Madden DR, Gorga JC, Strominger JL et al. The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC. Cell 1992; 70:1035–48.

    Article  PubMed  CAS  Google Scholar 

  21. Lopez de Castro JA, Alvarez I, Marcilla M et al. HLA-B27: a registry of constitutive peptide ligands. Tissue Antigens 2004; 63:424–45.

    Article  Google Scholar 

  22. Hillig RC, Huelsmeyer M, Saenger W et al. Thermodynamic and structural analysis of peptide-and allele-dependent properties of two HLA-B27 subtypes exhibiting differential disease association. J Biol Chem 2004; 279:652–63.

    Article  PubMed  CAS  Google Scholar 

  23. Herberts CA, Neijssen JJ, de Haan J et al. Cutting edge: HLA-B27 acquires many N-terminal dibasic peptides: coupling cytosolic peptide stability to antigen presentation. J Immunol 2006; 176:2697–701.

    PubMed  CAS  Google Scholar 

  24. Ruppert J, Sidney J, Celis E et al. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 1993; 74:929–37.

    Article  PubMed  CAS  Google Scholar 

  25. Rotzschke O, Falk K, Stevanovic S et al. Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B*2705 peptide motifs. Immunogenetics 1994; 39:74–77.

    Article  PubMed  CAS  Google Scholar 

  26. Marti M, Alvarez I, Montserrat V et al. Large sharing of T-cell epitopes and natural ligands between HLA-B27 subtypes (B*2702 and B*2705) associated with spondyloarthritis. Tissue Antigens 2001; 58:351–62.

    Article  PubMed  CAS  Google Scholar 

  27. Garcia F, Marina A, Lopez de Castro JA. Lack of carboxyl-terminal tyrosine distinguishes the B*2706-bound peptide repertoire from those of B*2704 and other HLA-B27 subtypes associated to ankylosing spondylitis. Tissue Antigens 1997; 49:215–21.

    Article  PubMed  CAS  Google Scholar 

  28. Sesma L, Montserrat V, Lamas JR et al. The peptide repertoires of HLA-B27 subtypes differentially associated to spondyloarthropathy (B*2704 and B*2706) differ by specific changes at three anchor positions. J Biol Chem 2002; 277:16744–49.

    Article  PubMed  CAS  Google Scholar 

  29. Fiorillo MT, Meadows L, D’Amato M et al. Susceptibility to ankylosing spondylitis correlates with the C-terminal residue of peptides presented by various HLA-B27 subtypes. Eur J Immunol 1997; 27:368–73.

    Article  PubMed  CAS  Google Scholar 

  30. Tieng V, Dulphy N, Boisgérault F et al. HLA-B*2707 peptide motif: Tyr C-terminal anchor is not shared by all disease-associated subtypes. Immunogenetics 1997; 47:103–05.

    Article  PubMed  CAS  Google Scholar 

  31. Garcia F, Galocha B, Villadangos JA et al. HLA-B27 (B*2701) specificity for peptides lacking Arg2 is determined by polymorphism outside the B pocket. Tissue Antigens 1997; 49:580–87.

    Article  PubMed  CAS  Google Scholar 

  32. Krebs S, Rognan D, Lopez de Castro JA. Long-range effects in protein-ligand interactions mediate peptide specificity in the human major histocompatibilty antigen HLA-B27 (B*2701). Protein Sci 1999; 8:1393–99.

    Article  PubMed  CAS  Google Scholar 

  33. Wang W, Man S, Gulden PH et al. Class I-restricted alloreactive cytotoxic T-lymphocytes recognize a complex array of specific MHC-associated peptides. J Immunol 1998; 160:1091–97.

    PubMed  CAS  Google Scholar 

  34. Heath WR, Kane KP, Mescher MF et al. Alloreactive T-cells discriminate among a diverse set of endogenous peptides. Proc Natl Acad Sci USA 1991; 88:5101–05.

    Article  PubMed  CAS  Google Scholar 

  35. Paradela A, Garcia-Peydro M, Vazquez J et al. The same natural ligand is involved in allorecognition of multiple HLA-B27 subtypes by a single T-cell clone: role of peptide and the MHC molecule in alloreactivity. J Immunol 1998; 161:5481–90.

    PubMed  CAS  Google Scholar 

  36. Lopez D, Garcia Hoyo R, Lopez de Castro JA. Clonal analysis of alloreactive T-cell responses against the closely related B*2705 and B*2703 subtypes. Implications for HLA-B27 association to spondylo-arthropathy. J Immunol 1994; 152:5557–71.

    PubMed  CAS  Google Scholar 

  37. Hulsmeyer M, Welfle K, Pohlmann T et al. Thermodynamic and structural equivalence of two HLA-B27 subtypes complexed with a self-peptide. J Mol Biol 2005; 346:1367–79.

    Article  PubMed  Google Scholar 

  38. Hülsmeyer M, Fiorillo MT, Bettosini F et al. Dual, HLA-B27 subtype-dependent conformation of a self-peptide. J Exp Med 2004; 199:271–81.

    Article  PubMed  Google Scholar 

  39. Scofield RH, Warren WL, Koelsch G et al. A hypothesis for the HLA-B27 immune dysregulation in spondyloarthropathy: contributions from enteric organisms, B27 structure, peptides bound by B27 and convergent evolution. Proc Natl Acad Sci USA 1993; 90:9330–34.

    Article  PubMed  CAS  Google Scholar 

  40. Scofield RH, Kurien B, Gross T et al. HLA-B27 binding of peptide from its own sequence and similar peptides from bacteria: implications for spondyloarthropathies. Lancet 1995; 345:1542–44.

    Article  PubMed  CAS  Google Scholar 

  41. Frauendorf E, von Goessel H, May E et al. HLA-B27-restricted T-cells from patients with ankylosing spondylitis recognize peptides from B*2705 that are similar to bacteria-derived peptides. Clin Exp Immunol 2003; 134:351–59.

    Article  PubMed  CAS  Google Scholar 

  42. Boisgérault F, Tieng V, Stolzenberg MC et al. Differences in endogenous peptides presented by HLA-B*2705 and B*2703 allelic variants: implications for susceptibility to spondylarthropathies. J Clin Invest 1996; 98:2764–70.

    Article  PubMed  Google Scholar 

  43. Garcia F, Marina A, Albar JP et al. HLA-B27 presents a peptide from a polymorphic region of its own molecule with homology to proteins from arthritogenic bacteria. Tissue Antigens 1997; 49:23–28.

    Article  PubMed  CAS  Google Scholar 

  44. Alvarez I, Sesma L, Marcilla M et al. Identification of novel HLA-B27 ligands derived from polymorphic regions of its own or other class I molecules based on direct generation by 20S proteasome. J Biol Chem 2001; 276:32729–37.

    Article  PubMed  CAS  Google Scholar 

  45. Ramos M, Alvarez I, Sesma L et al. Molecular mimicry of an HLA-B27-derived ligand of arthritis-linked subtypes with chlamydial proteins. J Biol Chem 2002; 277:37573–81.

    Article  PubMed  CAS  Google Scholar 

  46. Cragnolini JJ, Lopez de Castro JA. Identification of endogenously presented peptides from Chlamydia trachomatis with high homology to human proteins and to a natural self-ligand of HLA-B27. Mol Cell Proteomics 2008; 7:170–80.

    PubMed  CAS  Google Scholar 

  47. Popov I, Dela Cruz CS, Barber BH et al. The effect of an anti-HLA-B27 immune response on CTL recognition of Chlamydia. J Immunol 2001; 167:3375–82.

    PubMed  CAS  Google Scholar 

  48. Popov I, Dela Cruz CS, Barber BH et al. Breakdown of CTL tolerance to self HLA-B*2705 induced by exposure to Chlamydia trachomatis. J Immunol 2002; 169:4033–38.

    PubMed  CAS  Google Scholar 

  49. Fiorillo MT, Maragno M, Butler R et al. CD8+ T-cell autoreactivity to an HLA-B27-restricted self-epitope correlates with ankylosing spondylitis. J Clin Invest 2000; 106:47–53.

    Article  PubMed  CAS  Google Scholar 

  50. Rock KL, York IA, Saric T et al. Protein degradation and the generation of MHC class I-presented peptides. Adv Immunol 2002; 80:1–70.

    Article  PubMed  CAS  Google Scholar 

  51. Del Val M, Lopez D. Multiple proteases process viral antigens for presentation by MHC class I molecules to CD8(+) T-lymphocytes. Mol Immunol 2002; 39:235–47.

    Article  PubMed  CAS  Google Scholar 

  52. Seifert U, Marañón C, Shmueli A et al. An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. Nature Immunology 2003; 4:375–79.

    Article  PubMed  CAS  Google Scholar 

  53. Guil S, Rodriguez-Castro M, Aguilar F et al. Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental. J Biol Chem 2006; 281:39925–34.

    Article  PubMed  CAS  Google Scholar 

  54. Gil-Torregrosa BC, Castano AR, Del Val M. Major histocompatibility complex class I viral antigen processing in the secretory pathway defined by the trans-Golgi network protease furin. J Exp Med 1998; 188:1105–16.

    Article  PubMed  CAS  Google Scholar 

  55. Gil-Torregrosa BC, Castano AR, Lopez D et al. Generation of MHC class I peptide antigens by protein processing in the secretory route by furin. Traffic 2000; 1:641–51.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Y, Kida Y, Kuwano K et al. Role of furin in delivery of a CTL epitope of an anthrax toxin-fusion protein. Microbiol Immunol 2001; 45:119–25.

    PubMed  CAS  Google Scholar 

  57. Shen L, Sigal LJ, Boes M et al. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 2004; 21:155–65.

    Article  PubMed  CAS  Google Scholar 

  58. Lopez D, Del Val M. Selective involvement of proteasomes and cysteine proteases in MHC class I antigen presentation. J Immunol 1997; 159:5769–72.

    PubMed  CAS  Google Scholar 

  59. Rock KL, Gramm C, Rothstein L et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994; 78:761–71.

    Article  PubMed  CAS  Google Scholar 

  60. Luckey CJ, Marto JA, Partridge M et al. Differences in the expression of human class I MHC alleles and their associated peptides in the presence of proteasome inhibitors. J Immunol 2001; 167:1212–21.

    PubMed  CAS  Google Scholar 

  61. Marcilla M, Cragnolini JJ, Lopez de Castro JA. Proteasome-independent HLA-B27 ligands arise mainly from small basic proteins. Mol Cell Proteomics 2007; 6:923–38.

    Article  PubMed  CAS  Google Scholar 

  62. Kisselev AF, Callard A, Goldberg AL. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 2006; 281:8582–90.

    Article  PubMed  CAS  Google Scholar 

  63. Cresswell P, Ackerman AL, Giodini A et al. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev 2005; 207:145–57.

    Article  PubMed  CAS  Google Scholar 

  64. Peaper DR, Wearsch PA, Cresswell P. Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J 2005; 24:3613–23.

    Article  PubMed  CAS  Google Scholar 

  65. Santos SG, Campbell EC, Lynch S et al. MHC class I-ERp57-tapasin interactions within the peptide-loading complex. J Biol Chem 2007; 282:17587–93.

    Article  PubMed  CAS  Google Scholar 

  66. Wearsch PA, Cresswell P. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat Immunol 2007; 8:873–81.

    Article  PubMed  CAS  Google Scholar 

  67. Kienast A, Preuss M, Winkler M et al. Redox regulation of peptide receptivity of major histocompatibility complex class I molecules by ERp57 and tapasin. Nat Immunol 2007; 8:864–72.

    Article  PubMed  CAS  Google Scholar 

  68. Dick TP. Assembly of MHC class I peptide complexes from the perspective of disulfide bond formation. Cell Mol Life Sci 2004; 61:547–56.

    Article  PubMed  CAS  Google Scholar 

  69. Zernich D, Purcell AW, Macdonald WA et al. Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion. J Exp Med 2004; 200:13–24.

    Article  PubMed  CAS  Google Scholar 

  70. Peh CA, Burrows SR, Barnden M et al. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity 1998; 8:531–42.

    Article  PubMed  CAS  Google Scholar 

  71. Purcell AW, Gorman JJ, Garcia-Peydro M et al. Quantitative and qualitative influences of tapasin on the class I peptide repertoire. J Immunol 2001; 166:1016–27.

    PubMed  CAS  Google Scholar 

  72. Williams AP, Peh CA, Purcell AW et al. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 2002; 16:509–20.

    Article  PubMed  CAS  Google Scholar 

  73. Goodall JC, Ellis L, Hill Gaston JS. Spondylarthritis-associated and nonspondylarthritis-associated B27 subtypes differ in their dependence upon tapasin for surface expression and their incorporation into the peptide loading complex. Arthritis Rheum 2006; 54:138–47.

    Article  PubMed  CAS  Google Scholar 

  74. Montserrat V, Galocha B, Marcilla M et al. HLA-B*2704, an allotype associated with ankylosing spondylitis, is critically dependent on transporter associated with antigen processing and relatively independent of tapasin and immunoproteasome for maturation, surface expression and T-cell recognition: relationship to B*2705 and B*2706. J Immunol 2006; 177:7015–23.

    PubMed  CAS  Google Scholar 

  75. Colbert RA. HLA-B27 misfolding: a solution to the spondyloarthropathy conundrum? Mol Med Today 2000; 6:224–30.

    Article  PubMed  CAS  Google Scholar 

  76. Dangoria NS, DeLay ML, Kingsbury DJ et al. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 2002; 277:23459–68.

    Article  PubMed  CAS  Google Scholar 

  77. Turner MJ, Sowders DP, DeLay ML et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol 2005; 175:2438–48.

    PubMed  CAS  Google Scholar 

  78. Tran TM, Dorris ML, Satumtira N et al. Additional human β2-microglobulin curbs HLA-B27 misfolding and promotes arthrits and spondylitis without colitis in male HLA-B27 transgenic rats. Arthritis Rheum 2006; 54:1317–27.

    Article  PubMed  CAS  Google Scholar 

  79. Kollnberger S, Bird L, Sun MY et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum 2002; 46:2972–82.

    Article  PubMed  CAS  Google Scholar 

  80. Allen RL, Trowsdale J. Recognition of classical and heavy chain forms of HLA-B27 by leukocyte receptors. Curr Mol Med 2004; 4:59–65.

    Article  PubMed  CAS  Google Scholar 

  81. Bird LA, Peh CA, Kollnberger S et al. Lymphoblastoid cells express HLA-B27 homodimers both intracellularly and at the cell surface following endosomal recycling. Eur J Immunol 2003; 33:748–59.

    Article  PubMed  CAS  Google Scholar 

  82. Uchanska-Ziegler B, Ziegler A. Ankylosing spondylitis: a beta2m-deposition disease? Trends Immunol 2003; 24:73–76.

    Article  PubMed  CAS  Google Scholar 

  83. Montserrat V, Marti M, Lopez de Castro JA. Allospecific T-cell epitope sharing reveals extensive conservation of the antigenic features of peptide ligands among HLA-B27 subtypes differentially associated with spondyloarthritis. J Immunol 2003; 170:5778–85.

    PubMed  CAS  Google Scholar 

  84. Garcia-Peydro M, Marti M, Lopez de Castro JA. High T-cell epitope sharing between two HLA-B27 subtypes (B*2705 and B*2709) differentially associated to ankylosing spondylitis. J Immunol 1999 163:2299–305

    PubMed  CAS  Google Scholar 

  85. Montserrat V. Presentación antigénica por subtipos de HLA-B27 y HLA-B14 associados diferencialmente a enfermedad. Tesis Doctoral, Universidad Autónoma de Madrid 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

de Castro, J.A.L. (2009). HLA-B27-Bound Peptide Repertoires: Their Nature, Origin and Pathogenetic Relevance. In: López-Larrea, C., Díaz-Peña, R. (eds) Molecular Mechanisms of Spondyloarthropathies. Advances in Experimental Medicine and Biology, vol 649. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0298-6_14

Download citation

Publish with us

Policies and ethics