Article Text

other Versions

Download PDFPDF
Coronavirus disease 2019 outcomes among patients with rheumatic diseases 6 months into the pandemic
  1. Naomi Serling-Boyd1,2,
  2. Kristin M D’Silva1,2,3,
  3. Tiffany YT Hsu2,4,
  4. Rachel Wallwork5,
  5. Xiaoqing Fu3,
  6. Ellen M Gravallese2,4,
  7. April M Jorge1,2,3,
  8. Yuqing Zhang1,2,3,
  9. Hyon Choi1,2,3,
  10. Jeffrey A Sparks2,4,
  11. Zachary S Wallace1,2,3
  1. 1Rheumatology Unit, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
  2. 2Harvard Medical School, Boston, Massachusetts, USA
  3. 3Clinical Epidemiology Program, Division of Rheumatology, Allergy, and Immunology, Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
  4. 4Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, Massachusetts, USA
  5. 5Department of Rheumatology, Johns Hopkins Medicine, Baltimore, Maryland, USA
  1. Correspondence to Dr Zachary S Wallace, Massachusetts General Hospital, Boston, MA 02114, USA; zswallace{at}


Objective In earlier studies, patients with rheumatic and musculoskeletal disease (RMD) who got infected with COVID-19 had a higher risk of mechanical ventilation than comparators. We sought to determine COVID-19 outcomes among patients with RMD 6 months into the pandemic.

Methods We conducted a cohort study at Mass General Brigham in Boston, Massachusetts, of patients with RMD matched to up to five comparators by age, sex and COVID-19 diagnosis date (between 30 January 2020 and 16 July 2020) and followed until last encounter or 18 August 2020. COVID-19 outcomes were compared using Cox regression. Risk of mechanical ventilation was compared in an early versus a recent cohort of patients with RMD.

Results We identified 143 patients with RMD and with COVID-19 (mean age 60 years; 76% female individuals) and 688 comparators (mean age 59 years; 76% female individuals). There were no significantly higher adjusted risks of hospitalisation (HR: 0.87, 95% CI: 0.68–1.11), intensive care unit admission (HR: 1.27, 95% CI: 0.86–1.86), or mortality (HR: 1.02, 95% CI: 0.53–1.95) in patients with RMD versus comparators. There was a trend towards a higher risk of mechanical ventilation in the RMD cohort versus comparators, although not statistically significant (adjusted HR: 1.51, 95% CI: 0.93–2.44). There was a trend towards improvement in mechanical ventilation risk in the recent versus early RMD cohort (10% vs 19%, adjusted HR: 0.44, 95% CI: 0.17–1.12).

Conclusions Patients with RMD and comparators had similar risks of poor COVID-19 outcomes after adjusting for race, smoking and comorbidities. The higher risk of mechanical ventilation in the early RMD cohort was no longer detected in a recent cohort, suggesting improved management over time.

  • autoimmune diseases
  • epidemiology
  • outcome assessment
  • health care

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.


  • NS-B and KMD’S are joint first authors.

  • JAS and ZSW are joint senior authors.

  • Handling editor Josef S Smolen

  • Twitter @kmdsilvaMD, @jeffsparks, @zach_wallace_md

  • Contributors NS-B, KMD, JAS and ZSW designed the study, were responsible for the acquisition, analysis and interpretation of data, and drafted and revised the article. TH and RW were involved in data acquisition and revision of the manuscript. XF was involved in data analysis and interpretation and revision of the manuscript. EMG, AMJ, YZ and HC were involved in data analysis and interpretation and revision of the manuscript. All authors approved the final version of the article.

  • Funding NS-B and KMD are supported by the National Institutes of Health Ruth L. Kirschstein Institutional National Research Service Award [T32-AR-007258]. AMJ is supported by the Rheumatology Research Foundation Scientist Development Award. HC is funded by National Institutes of Health [P50-AR-060772]. JAS is funded by NIH/NIAMS (grant numbers K23 AR069688, R03 AR075886, L30 AR066953, P30 AR070253 and P30 AR072577), the Rheumatology Research Foundation R Bridge Award, the Brigham Research Institute, and the R. Bruce and Joan M. Mickey Research Scholar Fund. ZSW is funded by NIH/NIAMS [K23AR073334 and L30 AR070520].

  • Competing interests EMG reports editor position at New England Journal of Medicine and royalties from the textbook Rheumatology. HC reports research support from AstraZeneca and consultancy fees from Takeda, Selecta, GlaxoSmithKline, and Horizon. JAS reports research support from Amgen and Bristol-Myers Squibb and consultancy fees from Bristol-Myers Squibb, Gilead, Inova, Janssen, Optum, and Pfizer. ZSW reports research support from Bristol-Myers Squibb and consulting fees from Viela Bio.

  • Patient consent for publication Not required.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. This study includes deidentified patient data from Mass General Brigham. All data relevant to the study are included in the article or uploaded as supplementary information.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.