Article info

Download PDFPDF

On how to not misuse hierarchical clustering on principal components to define clinically meaningful patient subgroups. Response to: ‘On using machine learning algorithms to define clinical meaningful patient subgroups’ by Pinal-Fernandez and Mammen

Authors

  • Alain Meyer Exploration Fonctionnelle Musculaire, Service de physiologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France Centre National de Référence des Maladies Auto-Immunes Systémiques Rares de l'Est et du Sud-Ouest, Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France PubMed articlesGoogle scholar articles
  • Lionel Spielmann Service de Rhumatologie, Hôpitaux Civils de Colmar, Colmar, France PubMed articlesGoogle scholar articles
  • François Séverac Service de Santé Publique, GMRC, CHU de Strasbourg, Strasbourg, France iCUBE, UMR 7357, équipe IMAGeS, Université de Strasbourg, Strasbourg, France PubMed articlesGoogle scholar articles
  1. Correspondence to Dr Lionel Spielmann, Service de Rhumatologie, Hospices Civils de Colmar, Colmar 68024, Alsace (Région), France; lionel.spielmann{at}ch-colmar.fr
View Full Text

Citation

Meyer A, Spielmann L, Séverac F
On how to not misuse hierarchical clustering on principal components to define clinically meaningful patient subgroups. Response to: ‘On using machine learning algorithms to define clinical meaningful patient subgroups’ by Pinal-Fernandez and Mammen

Publication history

  • Received July 8, 2019
  • Accepted July 9, 2019
  • First published July 24, 2019.

Article Versions

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.