CLINICAL SCIENCE

Continued treatment with nintedanib in patients with systemic sclerosis-associated interstitial lung disease: data from SENSCIS-ON

Yannick Allanore 1, Madelon C Vonk 2, Oliver Distler 3, Arata Azuma 4, Maureen D Mayes 5, Martina Gahlemann 6, Alexandra James 7, Veronika Kohlbrenner 8, Margarida Alves 9, Dinesh Khanna 10, Kristin B Highland 11, on behalf of the SENSCIS-ON trial investigators

Handling editor Josef S Smolen

► Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10.1136/ard-2022-222564).

For numbered affiliations see end of article.

Correspondence to
Professor Yannick Allanore, Department of Rheumatology A, Descartes University, APHP, Cochin Hospital, Paris, France; yannick.allanore@me.com

Received 29 March 2022
Accepted 28 July 2022

ABSTRACT

Objectives In the SENSCIS trial in patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD), nintedanib reduced the rate of decline in forced vital capacity (FVC) versus placebo, with adverse events that were manageable for most patients. An open-label extension trial, SENSCIS-ON, is assessing safety and FVC decline during longer term nintedanib treatment.

Methods Patients who completed the SENSCIS trial or a drug–drug interaction (DDI) study of nintedanib and oral contraceptive on treatment were eligible to enter SENSCIS-ON. Adverse events and changes in FVC over 52 weeks of SENSCIS-ON were assessed in patients who received nintedanib in SENSCIS and continued nintedanib in SENSCIS-ON (‘continued nintedanib’ group) and in patients who received placebo in SENSCIS and initiated nintedanib in SENSCIS-ON or who received nintedanib for ≤28 days in the DDI study (‘initiated nintedanib’ group).

Results There were 197 patients in the continued nintedanib group and 247 in the initiated nintedanib group. Diarrhoea was reported in 68.0% and 68.8% of patients in these groups, respectively. Adverse events led to discontinuation of nintedanib in 4.6% and 21.5% of the continued nintedanib and initiated nintedanib groups, respectively. Mean (SE) changes in FVC from baseline to week 52 of SENSCIS-ON were −58.3 (15.5) mL in the continued nintedanib group and −44.0 (16.2) mL in the initiated nintedanib group.

Conclusions The safety profile of nintedanib over 52 weeks of SENSCIS-ON was consistent with that reported in SENSCIS. The change in FVC over 52 weeks of SENSCIS-ON was similar to that observed in the nintedanib group of SENSCIS.

INTRODUCTION

Systemic sclerosis is a heterogeneous autoimmune disease characterised by multiorgan vascular and fibrotic abnormalities. Interstitial lung disease (ILD) is a common manifestation of SSc, which most frequently develops early in the disease course. Systemic sclerosis-associated ILD (SSc-ILD) has a variable course and in some patients becomes progressive, characterised by an increase in fibrotic abnormalities on high-resolution CT (HRCT), a decline in forced vital capacity (FVC) and premature death. A decline in FVC in patients with SSc-ILD is predictive of mortality. There is no established algorithm to inform when pharmacotherapy for SSc-ILD should be initiated or which therapy should be used. Treatment decisions should be made on a case-by-case basis, taking into account the severity of ILD, risk factors for progression, other manifestations of SSc and the patient’s preferences.

Nintedanib, a tyrosine kinase inhibitor with anti-inflammatory and antifibrotic properties, has been licensed for the treatment of SSc-ILD as well as for the treatment of idiopathic pulmonary fibrosis (IPF) and other chronic fibrosing ILDs with a progressive phenotype. The efficacy and safety of nintedanib in patients with SSc-ILD were investigated in the SENSCIS trial, in which patients were randomised to receive nintedanib or placebo until the last patient had reached week 52 but for a maximum of 100 weeks. Over 52 weeks, nintedanib reduced the rate of decline in FVC (mL/year) by 44% compared with placebo, with an adverse event profile characterised predominantly by gastrointestinal events,
Systemic sclerosis

particularly diarrhoea. Data collected over the whole SENSCIS trial (up to 100 weeks of treatment) suggested that nintedanib provided a sustained benefit on slowing the progression of SSC-ILD over 100 weeks, with adverse events that were manageable for most patients. An open-label extension of SENSCIS, SENSCIS-ON, is assessing the safety and tolerability of nintedanib over the longer term. Exploratory data on FVC are also being collected. Here, we present data from the first year of SENSCIS-ON.

METHODS

Trial design

Patients in SENSCIS-ON (NCT033113180) came from two parent trials: SENSCIS (NCT02597933) and a drug–drug interaction (DDI) study (NCT03675581). SENSCIS enrolled patients with SSC-ILD with onset of first non-Raynaud symptom in the prior ≤7 years, extent of fibrotic ILD on HRCT ≥10% and FVC ≥40% predicted. Patients receiving prednisone ≤10 mg/day or equivalent and/or stable therapy with mycophenolate or methotrexate for ≥6 months were allowed to participate. Patients were randomised to receive nintedanib 150 mg two times per day or placebo, stratified by antitopoisomerase I antibody status, until the last patient had reached week 52 but for ≤100 weeks. Patients who completed SENSCIS on treatment and attended a follow-up visit 28 days later were eligible to participate in SENSCIS-ON. Per protocol, the off-treatment period between SENSCIS and SENSCIS-ON was ≤12 weeks.

The DDI study from which patients could enter SENSCIS-ON was an open-label study of nintedanib plus oral contraceptive (Microgynon; ethinylestradiol and levonorgestrel) in female patients with SSC-ILD. Patients receiving prednisone ≤10 mg/day or equivalent and/or stable therapy with methotrexate for ≥6 months were allowed to participate. Treatment with mycophenolate ≤2 weeks prior to the start of the study was not permitted. Patients received nintedanib 150 mg two times per day over a period of ≥14 days to approximately 28 days. Per protocol, the off-treatment period between this study and SENSCIS-ON was ≤7 days.

In both SENSCIS and the DDI study, dose reductions to 100 mg two times per day were permitted to manage adverse events and dose could be increased back to 150 mg two times per day once the adverse event had resolved. Treatment could be interrupted for ≤4 weeks or ≤8 weeks to manage adverse events considered to be related to study drug, or not related to study drug, respectively. Patients receiving nintedanib or placebo at a dose of 150 mg two times per day at the end of the parent study received nintedanib 150 mg two times per day in SENSCIS-ON. Patients receiving nintedanib or placebo at a dose of 100 mg two times per day at the end of the parent study could receive nintedanib 100 mg two times per day or 150 mg two times per day in SENSCIS-ON. In SENSCIS-ON, nintedanib dose reductions from 150 mg two times per day to 100 mg two times per day were permitted, and treatment could be interrupted for ≤4 weeks or ≤12 weeks to manage adverse events considered to be related to study drug, or not related to study drug, respectively. FVC was assessed at baseline and at weeks 4, 12, 24, 36 and 52, using sponsor-supplied spirometers, in accordance with American Thoracic Society/European Respiratory Society guidelines. FVC measurements were centrally reviewed.

SENSCIS-ON is being carried out in compliance with the protocol and in accordance with the principles of the Declaration of Helsinki, the International Council for Harmonisation Tripartite Guideline for Good Clinical Practice, applicable regulatory requirements and standard operating procedures. Patients provided written informed consent prior to entry into the trial.

Exclusion criteria

Patients with aspartate aminotransferase or alanine aminotransferase >3 times the upper limit of normal (ULN) or bilirubin >2 times the ULN were excluded from SENSCIS-ON, as were patients at risk of bleeding and patients with major thromboembolic events following completion of the parent trial. A complete list of the exclusion criteria is provided in the supplemental material.

Endpoints

Adverse events, reported irrespective of causality, with onset from the first drug intake to week 52 (or to the last drug intake plus 7 days for patients who prematurely discontinued treatment) were coded using the Medical Dictionary for Regulatory Activities V.22.1. Serious adverse events were defined as adverse events that resulted in death, were life threatening, resulted in hospitalisation or prolongation of hospitalisation, resulted in persistent or clinically significant disability or incapacity, were a congenital anomaly or birth defect or were deemed serious for any other reason. Recommendations for the management of diarrhoea and liver enzyme elevations were provided to the investigators. Efficacy endpoints assessed at week 52 included absolute change from baseline in FVC (mL); the proportions of patients with relative categorical increase and decline in FVC (mL); the cumulative distribution of patients by absolute change from baseline in FVC % predicted; and changes from baseline in the modified Rodnan skin score (mRSS), St. George’s Respiratory Questionnaire (SGRQ) total score and University of California Los Angeles (UCLA) Scleroderma Clinical Trial Consortium Gastrointestinal Tract (UCLA SCTC GIT) V.2.0 instrument total score. The mRSS measures skin thickness based on palpation of 17 areas, each rated on a scale of 0–3, with higher scores indicating worse skin thickening. The SGRQ is a measure of health-related quality of life (HRQL) in patients with respiratory diseases and comprises three domains: impact, symptoms and activity. Each domain score and the total score are scaled from 0 to 100, with higher scores indicating worse HRQL. The UCLA SCTC GIT instrument V.2.0 comprises seven scales measuring the severity and impact of gastrointestinal symptoms: reflux, distension or bloating, faecal soilage, diarrhoea, constipation, emotional well-being, social functioning. Each scale is scored from 0 to 3 except for diarrhoea (0 to 2) and constipation (0 to 2.5). The total score, derived as the mean of the scores for the scales except constipation, ranges from 0 to 2.83, with higher scores indicating worse symptoms.

Analyses

Analyses were conducted in patients who had received nintedanib in SENSCIS and continued nintedanib in SENSCIS-ON (‘continued nintedanib’ group), and in patients who had received placebo in SENSCIS and initiated nintedanib in SENSCIS-ON or who had received nintedanib for a brief period in the DDI study (‘initiated nintedanib’ group). All analyses were descriptive and conducted in patients who received ≥1 dose of trial medication. Changes from baseline in each endpoint were based on observed data available at the respective time point. The cumulative distribution of patients by absolute change from baseline in FVC % predicted was determined post hoc based on the worst observation carried forward method. In post hoc
analyses, adverse events and absolute change from baseline in
FVC (mL) at week 52 were analysed in subgroups by mycophenolate
use at the start of SENSCIS-ON.

RESULTS

Patients

Of the 473 patients who completed SENSCIS (n=456) or
the DDI study (n=17) on treatment, 444 (93.9%) entered
SENSCIS-ON. There were 197 patients in the continued
nintedanib group and 247 patients (231 from SENSCIS, 16
from the DDI study) in the initiated nintedanib group. Baseline
characteristics at entry into SENSCIS-ON were generally
similar between patients who continued and initiated
nintedanib (table 1). The majority of patients were women
(75.5%) and white (69.4%); mean (SD) FVC at baseline was
70.6 (18.0) % predicted; 232 patients (52.3%) were taking
mycophenolate. Baseline characteristics at entry into SENS-
CIS-ON in subgroups by mycophenolate use are shown in
online supplemental table S1. In the continued nintedanib
and initiated nintedanib groups, respectively, 13 (6.6%) and
51 (20.6%) patients permanently discontinued nintedanib
before week 52 (figure 1).

Exposure

Due to the trial design, the patients rolled over from SENSC
into SENSCIS-ON had received different exposures to trial
drug in SENSCIS (52–100 weeks). The median (minimum and
maximum) off-treatment period between SENSCIS and
SENSCIS-ON was 44 (26 and 88) days in patients who
continued nintedanib in SENSCIS-ON and 49 (24 and 140)
days in patients who initiated nintedanib in SENSCIS-ON.
The median (minimum and maximum) off-treatment period
between the DDI study and SENSCIS-ON was 8 (6 and 37)
days. Median (minimum and maximum) exposure over 52
weeks in SENSCIS-ON was 13.8 (0.2, 13.8) months in the
continued nintedanib group and 13.8 (0.0 and 13.8) months
in the initiated nintedanib group. Total median (minimum
and maximum) exposure to nintedanib across both SENSCIS
and SENSCIS-ON was 29.5 (12.8 and 37.0) months. Among
those in the continued nintedanib group, 54 patients
(27.4%) had >36 months’ exposure to nintedanib across
both SENSCIS and SENSCIS-ON.

Adverse events and dose adjustments

Adverse events are shown in table 2. Diarrhoea was the most
frequent adverse event, reported in 134 patients (68.0%) who
continued nintedanib and 170 patients (68.8%) who
initiated nintedanib. In the continued nintedanib and initi-
ated nintedanib groups, respectively, the worst diarrhoea
event was mild or moderate in intensity in 99.3% and 95.3%
of the patients who had diarrhoea. Among patients who
experienced diarrhoea, 3 (2.2%) and 17 (10.0%) patients
who continued and initiated nintedanib, respectively, perma-
nently discontinued nintedanib due to diarrhoea. Liver test
Table 2 Adverse events (reported irrespective of causality) in SENSCIS and SENSCIS-ON

<table>
<thead>
<tr>
<th></th>
<th>SENSCIS</th>
<th>SENSCIS-ON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nintedanib (n=288)</td>
<td>Placebo (n=288)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>218 (75.7)</td>
<td>91 (31.6)</td>
</tr>
<tr>
<td>Nausea</td>
<td>91 (31.6)</td>
<td>39 (13.5)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>71 (24.7)</td>
<td>30 (10.4)</td>
</tr>
<tr>
<td>Skin ulcer</td>
<td>53 (18.4)</td>
<td>50 (17.4)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>36 (12.5)</td>
<td>49 (17.0)</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>33 (11.5)</td>
<td>35 (12.2)</td>
</tr>
<tr>
<td>Cough</td>
<td>34 (11.8)</td>
<td>52 (18.1)</td>
</tr>
<tr>
<td>Weight decreased</td>
<td>34 (11.8)</td>
<td>12 (4.2)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>33 (11.5)</td>
<td>21 (7.3)</td>
</tr>
<tr>
<td>Liver test abnormalities</td>
<td>40 (13.9)</td>
<td>9 (3.1)</td>
</tr>
</tbody>
</table>

Adverse events were coded according to preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA). Events are shown based on single preferred terms except for ‘liver test abnormalities’, which was based on the standardised MedDRA query ‘liver related investigations, signs and symptoms’ (broad definition). Data are n (%) of patients with ≥1 such event reported over 52 weeks (or until 28 days after last drug intake if earlier in SENSCIS or until 7 days after last trial drug intake if earlier in SENSCIS-ON). Events reported in >10% of patients in either group in SENSCIS-ON are shown.

Abnormalities were reported in 22 (11.2%) and 48 (19.4%) patients who continued and initiated nintedanib, respectively. Bleeding and cardiovascular adverse events are summarised in online supplemental table S2.

Serious adverse events were reported in 42 (21.3%) and 60 (24.3%) patients in the continued nintedanib and initiated nintedanib groups, respectively. The most frequent serious adverse event was pneumonia, reported in 8 (4.1%) and 4 (1.6%) patients who continued and initiated nintedanib, respectively (online supplemental table S3). The adverse event profile of nintedanib was generally similar in subgroups by mycophenolate use at the start of SENSCIS-ON (online supplemental table S4). Among patients who continued nintedanib, upper respiratory tract infections were more frequent (17.1% vs 9.8%) and vomiting less frequent (10.5% vs 17.4%) in the subgroup taking mycophenolate. Among patients who initiated nintedanib, nasopharyngitis was less frequent in patients taking mycophenolate (10.2% vs 16.7%). Cough was more frequent in the subgroup taking mycophenolate both among those who continued (15.2% vs 8.7%) and initiated (11.8% vs 5.0%) nintedanib. Liver test abnormalities were less frequent in patients taking mycophenolate both among those who continued (3.8% vs 19.6%) and initiated (13.4% vs 25.8%) nintedanib.

Among patients who continued and initiated nintedanib in SENSCIS-ON, respectively, 36 (18.3%) and 122 (49.4%) had ≥1 treatment interruption. Among those who had ≥1 dose reduction, nine patients (25.0%) in the continued nintedanib group and eight patients (6.6%) in the initiated nintedanib group had ≥1 dose increase to 150 mg two times per day. Adverse events led to permanent discontinuation of nintedanib in nine patients (4.6%) who continued nintedanib and 53 patients (21.5%) who initiated nintedanib.

Forced vital capacity

In total, 176 (89.3%) and 171 (69.2%) patients in the continued nintedanib and initiated nintedanib groups, respectively, had FVC data available at baseline and week 52. Mean (SE) changes in FVC from baseline to week 52 of SENSCIS-ON were −58.3 (15.5) mL in patients who continued nintedanib, −44.0 (16.2) mL in patients who initiated nintedanib and −51.3 (11.2) mL in all patients (figure 2). Changes in FVC over time in patients who continued and initiated nintedanib in SENSCIS-ON are shown in figure 3. Changes in FVC over time in SENSCIS and SENSCIS-ON are shown together in online supplemental figure S1. Changes in FVC over time based on pooled data from SENSCIS and SENSCIS-ON are shown in figure 4.

As patients remained in the SENSCIS trial until the last patient had reached week 52, the last few patients enrolled were treated for only 52 weeks in SENSCIS before transitioning into SENSCIS-ON. Thus, in the pooled analysis of changes in FVC over time, data after week 52 included data from patients treated with nintedanib or placebo in SENSCIS and patients treated with nintedanib in SENSCIS-ON. Of the patients who had FVC data available at baseline and at week 52, 38.6% of patients who continued nintedanib and 17.0% of patients who initiated nintedanib had an improvement in FVC (mL) ≥5% between baseline and week 52 of SENSCIS-ON (figure 5). A relative decline in FVC (mL) of >5% from baseline to week 52 of SENSCIS-ON was observed in 38.6% of patients who continued nintedanib and 29.2% of patients who initiated nintedanib; a relative decline in FVC (mL) of >10% occurred in 17.6% of patients who continued nintedanib and 12.9% of patients who initiated nintedanib. The cumulative distribution of patients by absolute change in FVC % predicted from baseline to week 52 of SENSCIS-ON is shown in online supplemental figure S2. Mean (SE) changes in

Figure 2 Change from baseline in FVC (mL) at week 52 in SENSCIS and SENSCIS-ON. Changes were based on data from patients with available data at baseline and at week 52. FVC, forced vital capacity.
FVC in subgroups by mycophenolate use at the start of SENS-CIS-ON are shown in online supplemental figure S3.

mRSS, SGRQ and UCLA SCTC GIT instrument

Mean (SE) change from baseline in mRSS at week 52 was $-0.9 (0.2)$ in the continued nintedanib group (n=180) and $-1.0 (0.3)$ in the initiated nintedanib group (n=174).

Mean (SE) change from baseline in SGRQ total score was $1.37 (0.87)$ in the continued nintedanib group (n=177) and $-0.31 (0.91)$ in the initiated nintedanib group (n=183).

Mean (SE) change from baseline in UCLA SCTC GIT instrument total score was $0.28 (0.03)$ in the continued nintedanib group (n=168) and $0.18 (0.03)$ in the initiated nintedanib group (n=162).
DISCUSSION

Data from 52 weeks’ follow-up in SENSCIS-ON showed that the adverse event profile of nintedanib over longer term use was consistent with that reported over 52 weeks in SENSCIS. Among patients who initiated nintedanib in SENSCIS-ON, the proportions of patients who had a dose reduction or treatment interruption to manage adverse events over 52 weeks were similar to those observed in the nintedanib group of SENSCIS. These dose adjustments were less frequent among the patients who continued nintedanib in SENSCIS-ON. Permanent discontinuations of nintedanib due to adverse events were also less frequent among patients who continued nintedanib in SENSCIS-ON than among those who initiated nintedanib in SENSCIS or took nintedanib in SENSCIS-ON. It is unclear whether the lower frequency of dose adjustments and discontinuations in the patients who continued nintedanib in SENSCIS-ON simply reflects that patients who were better able to tolerate the drug were more likely to have entered and continued in the trial, or whether there is improved tolerance to nintedanib with longer-term use.

Diarrhoea has consistently been shown to be the most frequent side effect of nintedanib in patients with ILDs. Mild or moderate diarrhoea was the most frequently reported adverse event in SENSCIS-ON. Among patients who initiated nintedanib in SENSCIS-ON, 6.9% discontinued nintedanib due to diarrhoea over 52 weeks, consistent with the rate observed in patients who initiated nintedanib in SENSCIS. Discontinuation of nintedanib due to diarrhoea was less frequent among patients who continued nintedanib in SENSCIS-ON (1.5% over 52 weeks). Mean scores on the UCLA SCTC GIT instrument in both the continued nintedanib and initiated nintedanib groups suggested that most patients had no or mild gastrointestinal symptoms at the start of SENSCIS-ON. A small worsening in mean UCLA SCTC GIT instrument total score was observed over 52 weeks. The adverse event profile of nintedanib was generally similar in patients who used nintedanib alone and in combination with mycophenolate, although the proportion of patients who had cough was higher in patients taking than not taking mycophenolate. This is consistent with the product label for mycophenolate, which reports cough as a side effect.

The change in FVC over 52 weeks of SENSCIS-ON was similar to the change in FVC over 52 weeks in the nintedanib group of SENSCIS (−51.3 and −42.7 mL, respectively) and much smaller than the change in FVC over 52 weeks in the placebo group of SENSCIS (−104.8 mL). Similar proportions of nintedanib-treated patients in SENSCIS and SENSCIS-ON had a decline in FVC from baseline of >5% and >10% over 52 weeks. These data, which suggest a sustained benefit of nintedanib on slowing the progression of SSc-ILD, are supported by data from the open-label extension of the INPULSIS trials, which suggested that the effect of nintedanib on slowing the progression of IPF persisted beyond 4 years. The reduction in the rate of FVC decline provided by nintedanib in patients with SSc-ILD may be regarded as clinically meaningful given the disease trajectory and the known association between FVC decline and mortality in patients with SSc-ILD and other ILDs. Although the SENSCIS and SENSCIS-ON trials were not designed to investigate the effects of combination therapy, we note that the smallest decline in FVC over 52 weeks of SENSCIS-ON occurred in patients receiving both nintedanib and mycophenolate, consistent with observations in the SENSCIS trial. Changes in the SGRQ total score in SENSCIS-ON were small, consistent with observations from SENSCIS and from the INPULSIS trials in patients with IPF, suggesting that the changes in FVC in SENSCIS-ON were not associated with a significant deterioration in respiratory symptoms.

Strengths of our analyses include the large cohort of patients who participated in SENSCIS-ON and the standardised collection of FVC measurements. About half of the patients who entered SENSCIS-ON were taking mycophenolate, increasing the relevance of our findings to clinical practice. Limitations of our analyses include the lack of a placebo group and the gradual loss of patients over the course of the trial. There may be selection bias among the patients who opted to participate in SENSCIS-ON, that is, these patients may have had fewer adverse events or better lung function; however, over 90% of patients who completed SENSCIS on treatment opted to participate in SENSCIS-ON. Although patients who participated in SENSCIS-ON were grouped according to their prior treatment, these are not randomised groups in SENSCIS-ON, so direct comparisons between patients who continued and initiated nintedanib should be approached with caution.

In conclusion, these data suggest that continued treatment with nintedanib, up to 3 years in duration, had a manageable safety and tolerability profile in patients with SSc-ILD. The adverse event profile of nintedanib over 52 weeks in SENSCIS-ON was consistent with that reported over the 52 weeks.
of initial use in SENSCIS. The change in FVC in patients who received nintedanib over 52 weeks of SENSCIS-ON was similar to the change in FVC in patients who received nintedanib over 52 weeks in SENSCIS. These findings are consistent with a sustained clinically meaningful benefit of nintedanib in slowing the progression of SSc-ILD and support the prompt initiation of nintedanib in patients with SSc and pulmonary fibrosis.

Author affiliations
1Department of Rheumatology A, Descartes University, APHP, Cochin Hospital, Paris, France
2Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
3Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
4Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippori Medical School, Tokyo, Japan
5Division of Rheumatology and Clinical Immunogenetics, University of Texas McGovern Medical School, Houston, Texas, USA
6Inflammation Medicine, Boehringer Ingelheim (Schweiz) GmbH, Basel, Switzerland
7Elderbrook Solutions GmbH, Bietigheim-Bissingen, Germany
8Inflammation Medicine, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
9Inflammation Medicine, Boehringer Ingelheim International GmbH, Ingeheim, Germany
10Department of Medicine, University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
11Pulmonary Medicine, Cleveland Clinic, Cleveland, Ohio, USA

Acknowledgements The authors meet criteria for authorship as recommended by the International Committee of Medical Journal Editors (ICMJE). The authors did not receive payment for development of this manuscript. Julie Fleming and Wendy Morris of FleishmanHillard, London, UK, provided medical writing assistance, which was contracted and funded by BI. BI was given the opportunity to review the manuscript for medical and scientific accuracy as well as intellectual property considerations.

Contributors OD, AA, MDM, MG, VK, MA and KBH were involved in the conceptualisation or design of the study. YA, MCV, OD, AA, MDM, DK and KBH were involved in data acquisition. AI was involved in data analysis. All authors were involved in the interpretation of the data and in the writing and critical review of the manuscript. YA is the guarantor.

Funding The SENSCIS and SENSCIS-ON trials were funded by Boehringer Ingelheim International GmbH (BI).

Competing interests Yannick Allanore has received consulting fees from Boehringer Ingelheim (BI) and Sanofi; speaking fees from AbbVie, BI, Janssen; and has participated on Data Safety Monitoring Boards or Advisory Boards for BI, ChemoCineph, Curzen, Medscic, Menarini, Prometheus, Sanofi, Madelon C Vonk reports grants paid to her institution from BI; consulting and speaking fees from BI; and is a Scientific Advisory Committee Member for the National Scleroderma Foundation in the USA.

Patient and public involvement Patients were involved in the design and conduct of the SENSCIS trial and of its open-label extension, SENSCIS-ON (for example, by advising on the mouthpieces and blood draw needles that should be used). Patients’ advice was also sought on the reporting of the results.

Patient consent for publication Not applicable.

Ethics approval The protocol was approved by an Ethics Committee or Institutional Review Board at all the participating centres (listed in the supplemental material). Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request (see online supplemental material).

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMBI) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMBI. BMBI disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMBI does not warrant the accuracy and reliability of all translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

ORCID iDs
Yannick Allanore http://orcid.org/0000-0002-6149-0002
Madelon C Vonk http://orcid.org/0000-0002-2266-9907
Oliver Distler http://orcid.org/0000-0002-0546-8310
Dinesh Khanna http://orcid.org/0000-0003-1412-4453

REFERENCES

Continued treatment with nintedanib in patients with systemic sclerosis-associated interstitial lung disease: data from SENSCIS-ON

Yannick Allanore, Madelon C Vonk, Oliver Distler, Arata Azuma, Maureen D Mayes, Martina Gahlemann, Alexandra James, Veronika Kohlbrenner, Margarida Alves, Dinesh Khanna, Kristin B Highland on behalf of the SENSCIS-ON trial investigators

Supplemental material

Contents

A: Exclusion criteria

B: Baseline characteristics of patients in SENSCIS-ON in subgroups by mycophenolate use

C: Bleeding and cardiovascular adverse events in SENSCIS and SENSCIS-ON

D: Serious adverse events in SENSCIS and SENSCIS-ON

E: Adverse events in SENSCIS-ON by mycophenolate use at baseline

F: Change from baseline in FVC (mL) over time in SENSCIS and SENSCIS-ON

G: Cumulative distribution of patients by change in FVC from baseline to week 52 of SENSCIS-ON

H: Change from baseline in FVC (mL) at week 52 in SENSCIS-ON by mycophenolate use at baseline

I: Data availability statement

J: SENSCIS-ON trial sites
A. Exclusion criteria for SENSCIS-ON

Patients who met any of the following criteria were not eligible:

1. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) >3 times the upper limit of normal (ULN)
2. Bilirubin >2 times the ULN
3. Creatinine clearance <30 mL/min calculated per Cockcroft-Gault formula
4. Clinically relevant anaemia
5. Bleeding risk, i.e. any of the following:
 a. Known genetic predisposition to bleeding
 b. Patients who required:
 i. Fibrinolysis, full-dose therapeutic anticoagulation
 ii. High-dose antiplatelet therapy
 c. Haemorrhagic central nervous system event after completion of the parent trial
 d. Any of the following after last treatment in the parent trial:
 i. Haemoptysis or haematuria
 ii. Active gastrointestinal bleeding or gastrointestinal ulcers
 iii. Gastric antral variceal ectasia
 iv. Major injury or surgery
 e. Coagulation parameters: international normalised ratio >2, prolongation of prothrombin time and partial thromboplastin time by >1.5 time the ULN
6. New major thrombo-embolic events developed after completion of the parent trial:
 a. Stroke
 b. Deep vein thrombosis
 c. Pulmonary embolism
 d. Myocardial infarction
7. Major surgery (according to the investigator's assessment) to be performed within the next 3 months
8. >12 weeks between last drug intake in SENSCIS, or >1 week between last nintedanib intake in the drug–drug interaction study, and initiation of nintedanib in SENSCIS-ON
9. Usage of any investigational drug after completion of the parent trial, or planned usage of an investigational drug during SENSCIS-ON
10. A disease or condition which in the opinion of the investigator may put the patient at risk or limit the patient's ability to participate in this trial
11. Chronic alcohol or drug abuse or any condition that, in the investigator's opinion, makes the patient an unreliable trial patient or unlikely to complete the trial
12. Known hypersensitivity to nintedanib
13. Women who were pregnant, nursing, or who planned to become pregnant while in the trial
14. Previous enrolment in SENSCIS-ON
<table>
<thead>
<tr>
<th></th>
<th>Taking mycophenolate</th>
<th>Not taking mycophenolate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continued nintedanib</td>
<td>Initiated nintedanib</td>
</tr>
<tr>
<td></td>
<td>(n=105)</td>
<td>(n=127)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>74 (70.5)</td>
<td>94 (74.0)</td>
</tr>
<tr>
<td>Age, years, mean (SD)</td>
<td>53.9 (10.8)</td>
<td>52.3 (11.9)</td>
</tr>
<tr>
<td>Weight, kg, mean (SD)</td>
<td>72.5 (14.8)</td>
<td>72.2 (17.4)</td>
</tr>
<tr>
<td>Body mass index, kg/m², mean (SD)</td>
<td>26.7 (4.6)</td>
<td>26.3 (5.5)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>87 (82.9)</td>
<td>99 (78.0)</td>
</tr>
<tr>
<td>Asian</td>
<td>7 (6.7)</td>
<td>17 (13.4)</td>
</tr>
<tr>
<td>Black or African-American</td>
<td>7 (6.7)</td>
<td>8 (6.3)</td>
</tr>
<tr>
<td>Other</td>
<td>4 (3.8)</td>
<td>3 (2.4)</td>
</tr>
<tr>
<td>FVC, mL, mean (SD)</td>
<td>2379 (704)</td>
<td>2460 (863)</td>
</tr>
<tr>
<td>FVC, % predicted, mean (SD)</td>
<td>67.7 (16.8)</td>
<td>68.6 (18.7)</td>
</tr>
<tr>
<td>mRSS, mean (SD)</td>
<td>9.6 (8.0)</td>
<td>8.9 (8.0)</td>
</tr>
<tr>
<td>SGRQ total score, mean (SD)</td>
<td>46.0 (21.0)</td>
<td>40.5 (22.4)</td>
</tr>
<tr>
<td>UCLA SCTC GIT instrument total score, mean (SD)</td>
<td>0.33 (0.33)</td>
<td>0.38 (0.34)</td>
</tr>
</tbody>
</table>
C. Table S2. Bleeding and cardiovascular adverse events in SENSCIS and SENSCIS-ON

<table>
<thead>
<tr>
<th></th>
<th>SENSCIS</th>
<th>SENSCIS-ON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nintedanib (n=288)</td>
<td>Placebo (n=288)</td>
</tr>
<tr>
<td>Bleeding*</td>
<td>32 (11.1)</td>
<td>24 (8.3)</td>
</tr>
<tr>
<td>Hypertension†</td>
<td>14 (4.9)</td>
<td>5 (1.7)</td>
</tr>
<tr>
<td>Major adverse cardiovascular events‡</td>
<td>4 (1.4)</td>
<td>5 (1.7)</td>
</tr>
<tr>
<td>Venous thromboembolism†</td>
<td>4 (1.4)</td>
<td>3 (1.0)</td>
</tr>
<tr>
<td>Haemorrhagic and ischaemic stroke†</td>
<td>3 (1.0)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Arterial thromboembolism†</td>
<td>2 (0.7)</td>
<td>2 (0.7)</td>
</tr>
<tr>
<td>QT prolongation†</td>
<td>2 (0.7)</td>
<td>0</td>
</tr>
<tr>
<td>Myocardial infarction†</td>
<td>0</td>
<td>2 (0.7)</td>
</tr>
<tr>
<td>Cardiac failure†</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
</tr>
</tbody>
</table>

Data are n (%) of patients with ≥1 such event reported over 52 weeks (or until 28 days after last drug intake if earlier in SENSCIS or until 7 days after last trial drug intake if earlier in SENSCIS-ON). *Based on pooled MedDRA terms. †Narrow standardised MedDRA query. ‡Based on fatal adverse events in the MedDRA system organ classes “cardiac disorders” and “vascular disorders”; any fatal and non-fatal events in the subordinate standardised MedDRA query “myocardial infarction” (broad); any fatal and non-fatal stroke events (based on selected MedDRA preferred terms); and the MedDRA preferred terms “sudden death”, “cardiac death” and “sudden cardiac death”.
D. Table S3. Serious adverse events (reported irrespective of causality) in SENSCIS and SENSCIS-ON

<table>
<thead>
<tr>
<th>Event</th>
<th>SENSCIS Nintedanib (n=288)</th>
<th>SENSCIS Placebo (n=288)</th>
<th>SENSCIS-ON Continued nintedanib (n=197)</th>
<th>SENSCIS-ON Initiated nintedanib (n=247)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>8 (2.8)</td>
<td>1 (0.3)</td>
<td>8 (4.1)</td>
<td>4 (1.6)</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>3 (1.0)</td>
<td>5 (1.7)</td>
<td>2 (1.0)</td>
<td>3 (1.2)</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
<td>4 (1.4)</td>
<td>4 (1.4)</td>
<td>4 (2.0)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>Liver injury</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4 (1.6)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>2 (0.7)</td>
<td>2 (0.7)</td>
<td>0</td>
<td>3 (1.2)</td>
</tr>
<tr>
<td>Skin ulcer</td>
<td>1 (0.3)</td>
<td>2 (0.7)</td>
<td>3 (1.5)</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary arterial hypertension</td>
<td>3 (1.0)</td>
<td>0</td>
<td>1 (0.5)</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Drug-induced liver injury</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td>0</td>
<td>3 (1.2)</td>
</tr>
<tr>
<td>Hepatic enzyme increased</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 (1.2)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td>1 (0.5)</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Pulmonary fibrosis</td>
<td>3 (1.0)</td>
<td>4 (1.4)</td>
<td>0</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>0</td>
<td>2 (0.7)</td>
<td>0</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>1 (0.3)</td>
<td>0</td>
<td>0</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Chest pain</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Cholelithiasis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Basal cell carcinoma</td>
<td>1 (0.3)</td>
<td>0</td>
<td>0</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>0</td>
<td>0</td>
<td>2 (1.0)</td>
<td>0</td>
</tr>
<tr>
<td>Lung neoplasm malignant</td>
<td>0</td>
<td>0</td>
<td>2 (1.0)</td>
<td>0</td>
</tr>
</tbody>
</table>

Serious adverse events were defined as adverse events that resulted in death, were life threatening, resulted in hospitalisation or prolongation of hospitalisation, resulted in persistent or clinically significant disability or incapacity, were a congenital anomaly or birth defect, or were deemed to be serious for any other reason.

Serious adverse events were coded according to preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA). Adverse events are shown based on single preferred terms. Data are n (%) of patients with ≥1 such event reported over 52 weeks (or until 28 days after last drug intake if earlier in SENCSIS or until 7 days after last trial drug intake if earlier in SENSCIS-ON). Events reported in ≥2 patients in either group in SENSCIS-ON are shown.
E. Table S4. Adverse events (reported irrespective of causality) in SENSCIS-ON by mycophenolate use at baseline

<table>
<thead>
<tr>
<th></th>
<th>Taking mycophenolate</th>
<th>Not taking mycophenolate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continued nintedanib</td>
<td>Initiated nintedanib</td>
</tr>
<tr>
<td></td>
<td>(n=105)</td>
<td>(n=127)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>71 (67.6)</td>
<td>89 (70.1)</td>
</tr>
<tr>
<td>Nausea</td>
<td>15 (14.3)</td>
<td>29 (22.8)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>11 (10.5)</td>
<td>30 (23.6)</td>
</tr>
<tr>
<td>Skin ulcer</td>
<td>20 (19.0)</td>
<td>22 (17.3)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>13 (12.4)</td>
<td>13 (10.2)</td>
</tr>
<tr>
<td>Upper respiratory tract</td>
<td>18 (17.1)</td>
<td>16 (12.6)</td>
</tr>
<tr>
<td>infection</td>
<td></td>
<td>9 (9.8)</td>
</tr>
<tr>
<td>Cough</td>
<td>16 (15.2)</td>
<td>15 (11.8)</td>
</tr>
<tr>
<td>Weight decreased</td>
<td>8 (7.6)</td>
<td>16 (12.6)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>3 (2.9)</td>
<td>19 (15.0)</td>
</tr>
<tr>
<td>Liver test abnormalities</td>
<td>4 (3.8)</td>
<td>17 (13.4)</td>
</tr>
</tbody>
</table>

Adverse events were coded according to preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA). Adverse events are shown based on single preferred terms except for “liver test abnormalities”, which was based on the standardised MedDRA query “liver related investigations, signs and symptoms” (broad definition). Data are n (%) of patients with ≥1 such event reported over 52 weeks (or until 7 days after last trial drug intake if earlier). Events reported in >10% of patients in the continued nintedanib or initiated nintedanib groups in the overall population are shown.
F. Figure S1. Change from baseline in FVC (mL) over time in SENSCIS and SENSCIS-ON

No. of patients
SENCSIS
Nintedanib 288 283 281 273 278 265 262 241
Placebo 288 283 281 280 283 280 268 257

SENCSIS-ON
Continued nintedanib 191 189 187 185 181 176
Initiated nintedanib 243 238 230 214 194 171

Patients who completed the SENCSIS trial on treatment and attended a follow-up visit 28 days later were eligible to participate in SENCSIS-ON. Baseline in SENCSIS-ON was the last measurement on or before the date of first trial drug intake in SENCSIS-ON.
G. Figure S2. Cumulative distribution of patients by change in FVC from baseline to week 52 of SENSCIS-ON

Absolute change from baseline in FVC % predicted at week 52

- Worsening
- Improvement
H. Figure S3. Change from baseline in FVC (mL) at week 52 in SENSICS-ON by mycophenolate use at baseline

Taking mycophenolate
- Continued nintedanib: n=94
- Initiated nintedanib: n=93

Not taking mycophenolate
- Continued nintedanib: n=82
- Initiated nintedanib: n=78

Changes were based on data from patients with available data at baseline and at week 52.
I. Data availability

To ensure independent interpretation of clinical study results, Boehringer Ingelheim grants all external authors access to relevant material, including participant-level clinical study data, as needed by them to fulfill their role and obligations as authors under the ICMJE criteria.

Clinical study documents and participant clinical study data are available to be shared on request after publication of the primary manuscript in a peer-reviewed journal, and if regulatory activities are complete and other criteria met as per the BI Policy on Transparency and Publication of Clinical Study Data (https://www.mystudywindow.com/msw/datasharing). Bona fide, qualified scientific and medical researchers are eligible to request access to the clinical study data with corresponding documentation describing the structure and content of the datasets. Upon approval, and governed by a Legal Agreement, data are shared in a secured data-access system for a period of 1 year, which may be extended upon request. Prior to providing access, clinical study documents and data will be examined, and, if necessary, redacted and de-identified, to protect the personal data of study participants and personnel, and to respect the boundaries of informed consent.

Researchers should use the https://vivli.org/ link to request access to study data and visit https://www.mystudywindow.com/msw/datasharing
J. SENSCIS-ON trial sites

Argentina: APRILLUS, Buenos Aires; CEMER-Centro Medico De Enfermedades Respiratorias, Buenos Aires; Hospital Militar Central Cirujano Mayor Dr. Cosme Argerich, Buenos Aires. Australia: St Vincent’s Hospital Melbourne, Fitzroy; Royal Adelaide Hospital, Adelaide; Liverpool Hospital, Liverpool; Royal Prince Alfred Hospital, Camperdown. Austria: Medical University of Innsbruck, Innsbruck. Belgium: UZ Leuven, Leuven; Centre Hospitalier Universitaire de Liège, Liège. Brazil: Edumed - Educacao e Saude SA, Curitiba. Canada: Hôpital du Sacré-Coeur, Quebec. Chile: Centro de Investigación del Maule, Talca; Hospital Clínico Regional de Concepción "Dr. Guillermo Grant Benavente", Concepción. China: Peking Union Medical College Hospital, Beijing; The First Hospital of China Medical University, Shenyang City; The First Hospital of Jilin University, Changchun City; West China Hospital, Chengdu City; Huashan Hospital, Fudan University, Shanghai; The First Affiliated Hospital of Anhui Medical University, Hefei City. Czech Republic: Institute of Rheumatology Prague, Prague. Denmark: Aarhus University Hospital, Aarhus; Odense University Hospital, Odense. Finland: HYKS, Keuhkosairauksien yksikkö, Helsinki; TYKS, Keuhkosairauksien klinikka, T-sairaala, Turku. France: CHU Rouen - Hôpital Charles Nicolle, Rouen; Hôpital Arnaud de Villeneuve, Montpellier; Hôpital Larrey, Toulouse; Hôpital Albert Calmette, Lille; Hôpital Hôtel-Dieu - CHU de Nantes, Nantes; CHR LILLE - Hôpital Claude Huriez, Lille; Hôpital Pasteur, Nice; Hôpital Pontchaillou, Rennes; Hôpital Bichat, Paris; CHRU de Bréon, Tours; Groupement Hospitalier Est - Hôpital Louis Pradel, Bron; Hôpital Cochin, Paris; Hôpital Avicenne, Bobigny. Germany: Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel; Universitätsklinikum Münster, Münster; Universitätsklinikum Carl Gustav Carus der Technischen Universität Dresden, Dresden; Klinik Donaustauf, Donaustauf; Universitätsmedizin Greifswald, Greifswald; Universitätsklinikum Erlangen, Erlangen; Asklepios Kliniken Hamburg GmbH, Hamburg; Medizinische Hochschule Hannover, Hannover; Universitätsklinikum Tübingen, Tübingen; Thoraxklinik-Heidelberg GmbH am Universitätsklinikum, Heidelberg. Greece: General Hospital of Athens "Laiko", Athens. India: Getwell Hospital & Research Institute, Nagpur; Care Hospital, Banjara Hills, Hyderabad; Postgraduate Institute of Medical Education and Research, Chandigarh; SIR Gangaram Hospital, New Delhi; All India Institute of Medical Science, New Delhi; B.J. Medical College and Sassoq General Hospital, Pune; Asthma Bhawan, Jaipur; Ramaiah Medical College and Hospitals, Bangalore; Nizam’s Institute of Medical Sciences, Hyderabad. Israel: Sourasky Tel Aviv Medical Center Rheumatology Department, Tel Aviv; Rabin Medical Center Beilinson, Petah Tiqwa; Bnai Zion Medical Center, Haifa; Rambam Medical Center Rheumatology Department, Haifa. Italy: A.O. San Gerardo di Monza, Monza; Azienda Universitaria-Universita' La Sapienza, Roma; Università degli Studi di Padova, Padova; Università degli Studi di Genova, Genova; A.O Università – Università degli Studi della Campania Luigi Vanvitelli, Campania. Japan: Sapporo Medical University Hospital, Hokkaido; Toho University Omori Medical Centre, Tokyo; Nippon Medical School Hospital, Tokyo; St. Marianna University School of Medicine Hospital, Kanagawa; Kitasato University Hospital, Kanagawa; Kanagawa Cardiovascular and Respiratory Center, Kanagawa; Hamamatsu University Hospital, Shizuoka; Tosei General Hospital, Aichi; Osaka Medical College Hospital, Osaka; National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka; Kindai University Hospital, Osaka; National Hospital Organization Himeji Medical Center, Hyogo; Tokushima University Hospital, Tokushima; Kurume University Hospital, Fukuoka; Nagasaki University Hospital, Nagasaki; Saitama Medical University Hospital, Saitama; Institute of Rheumatology Tokyo Women's
Medical University, Tokyo; Juntendo University Hospital, Tokyo. **Malaysia:** Hospital Pulau Pinang, Pulau Pinang; University Malaya Medical Centre, Kuala Lumpur. **México:** Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México. **Netherlands:** Leids Universitair Medisch Centrum (LUMC), Leiden; Radboud Universitair Medisch Centrum, Nijmegen; VU Medisch Centrum, Amsterdam; Erasmus Medisch Centrum, Rotterdam. **Norway:** Oslo Universitetssykehus HF, Rikshospitalet, Oslo; Nord-Norge, Tromsø. **Poland:** Independent Public Clinical Hospital No.1 in Wroclaw, Wroclaw; Dr Jan Bziewski University Hospital No. 2, Bydgoszcz; EMED, Center of Medical Services private practice, Rzeszow; Specialist Allergy-Internist Center ALL-MED, Krakow. **Portugal:** Centro Hospitalar e Universitário de Coimbra, Coimbra; Hospital Fernando Fonseca, Amadora; Centro Hospitalar de São João, Porto; Hospital Garcia de Orta, Almada; ULSAM, EPE-Hospital Conde de Bertiandos, Ponte de Lima; Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia. **Spain:** Hospital Universitario Dr Peset, Valencia; Hospital Universitario 12 de Octubre, Madrid; Hospital Santa Creu i Sant Pau, Barcelona; Hospital Universitari Vall d'Hebron, Barcelona; Hospital General Universitario Gregorio Marañón, Madrid; Hospital Universitario y Politécnico La Fe, Valencia; Hospital Álvaro Cunqueiro, Vigo. **Sweden:** Sahlgrenska University Hospital, Gothenburg. **Switzerland:** Universitätsspital Zürich, Zürich. **Thailand:** Songklanagarind Hospital, Hat Yai; Srinagarind Hospital, Muang; Ramathibodi Hospital, Ratchathewi. **United Kingdom:** Royal Free Hospital, London; Salford Royal Hospital, Salford; Royal Brompton Hospital, London; Guy's Hospital, London. **United States:** Cleveland Clinic, Cleveland; Vanderbilt University Medical Center, Nashville; Virginia Mason Medical Center, Seattle; Tulane University Hospital and Clinic, New Orleans; Georgetown University Clinical Research Unit, Washington; Mayo Clinic, Rochester; Duke University Medical Center, Durham; Froedtert and The Medical College of Wisconsin, Milwaukee; Boston University School of Medicine, Boston; Yale University School of Medicine, New Haven; University of Kansas Medical Center, Kansas City; Thomas Jefferson University, Philadelphia; University of California Davis, Sacramento; Columbia University Medical Center-New York Presbyterian Hospital, New York; University of Iowa Hospitals and Clinics, Iowa City; University of Pennsylvania, Philadelphia; The University of Texas at Houston, Houston; Stanford University Medical Center, Stanford; The Emory Clinic, Atlanta; University of California San Francisco, San Francisco; University of Miami Pulmonary Research Office, Miami; University of Alabama at Birmingham Lung Health Center, Birmingham; University of California Los Angeles, Los Angeles; Northwestern University, Chicago; University of Toledo, Toledo; Washington University School of Medicine, St. Louis; Hospital for Special Surgery Division of Rheumatology, New York; University of Cincinnati, Cincinnati; Johns Hopkins Hospital, Baltimore; University of Minnesota Masonic Cancer Center, Minneapolis; Temple University Hospital, Philadelphia; University of Utah Health Sciences Center, Salt Lake City; University of Washington Medical Center, Seattle; Medical University of South Carolina, Charleston; University of Florida College of Medicine, Jacksonville; University of Colorado Hospital, Aurora; Inova Fairfax Medical Campus, Falls Church; University of Texas Southwestern Medical Center, Dallas; Icahn School of Medicine at Mount Sinai, New York.