Psoriatic arthritis

Efficacy and safety of risankizumab for active psoriatic arthritis: 24-week results from the randomised, double-blind, phase 3 KEEPsAKE 1 trial

Lars Erik Kristensen,1 Mauro Keiserman,2 Kim Papp,3 Leslie McCasland,4 Douglas White,5 Wenjing Lu,6 Zailong Wang,6 Ahmed M Soliman,6 Ann Eldred,6 Lisa Barcomb,6 Frank Behrens7

ABSTRACT

Objective To evaluate risankizumab, a biological therapy that inhibits interleukin 23, in patients with active psoriatic arthritis (PsA) who have responded inadequately or are intolerant to ≥1 conventional synthetic disease-modifying antirheumatic drug (csDMARD).

Methods In the randomised, placebo-controlled, double-blind KEEPsAKE 1 trial, 964 patients with active PsA were randomised (1:1) to receive risankizumab 150 mg or placebo at weeks 0, 4 and 16. The primary endpoint was the proportion of patients achieving ≥20% improvement in American College of Rheumatology criteria (ACR20) at week 24. Here, we report the results from the 24-week double-blind period; the open-label period with all patients receiving risankizumab is ongoing.

Results At week 24, a significantly greater proportion of patients receiving risankizumab achieved the primary endpoint of ACR20 (57.3% vs placebo, 33.5%; p<0.001). Significant differences were also observed for risankizumab versus placebo for the first eight ranked secondary endpoints, including skin and nail psoriasis endpoints, minimal disease activity and resolution of enthesis and dactylitis (<p=0.001). Adverse events and serious adverse events were reported at similar rates in the risankizumab and placebo groups. Serious infections were reported for 1.0% and 1.2% of patients receiving risankizumab and placebo, respectively. There was one death in the risankizumab group (urosepsis deemed unrelated to the study drug).

Conclusions Risankizumab treatment results in significantly greater improvement of signs and symptoms of PsA compared with placebo and is well tolerated in patients with active PsA who have responded inadequately or are intolerant to ≥1 csDMARD.

Trial registration number NCT03675308.

INTRODUCTION

Psoriatic arthritis (PsA) is a chronic, systemic, inflammatory disease characterised by co-occurring musculoskeletal inflammation and psoriasis. The diverse clinical manifestations of PsA include arthritis, enthesis, dactylitis, axial involvement, and skin and/or nail psoriasis. The impact of PsA on patients’ function; pain; fatigue; emotional well-being and ability to participate in work, social and leisure activities reduces patients’ quality of life1 and contributes to the individual and societal burden of the disease.2

Treating all facets of PsA is important for meaningfully improving patients’ quality of life. First-line PsA treatment includes non-steroidal anti-inflammatory drugs, local corticosteroid injections for musculoskeletal symptoms and topical therapies for psoriasis. For patients with poor prognostic factors or who do not respond adequately to first-line treatments, systemic therapy with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), antitumour necrosis factor therapy and other biological therapies are recommended.3 Despite the range of available PsA therapies,
Psoriatic arthritis

efficacious, well-tolerated therapeutic options are needed for patients who have experienced inadequate responses or intolerances to available therapies.

Risankizumab is a humanized IgG1 monoclonal antibody that specifically inhibits interleukin 23 (IL-23) by binding to its p19 subunit. Risankizumab is approved in multiple countries to treat moderate-to-severe plaque psoriasis. The KEEPAKE 1 trial is evaluating the efficacy and safety of risankizumab to treat active PsA in patients who had responded inadequately or were intolerant to ≥1 csDMARD. The companion KEEPAKE 2 trial (NCT03671148) is evaluating similar endpoints in a patient population that includes patients with a history of inadequate response or intolerance to biological agents. The results of the initial 24-week double-blind period of the ongoing KEEPAKE 1 study are reported herein.

METHODS

Study design and treatment

This phase 3, global, multicentre study included a screening period; a 24-week double-blind, placebo-controlled, parallel-group period; and a 204-week open-label period. Patients were randomly assigned (1:1, stratified by baseline psoriasis (≥3%/<3% body surface area), presence of dactylitis (yes/no), presence of enthesitis (yes/no) and current csDMARD use (0/≥1)) by interactive response technology to receive subcutaneously administered risankizumab 150 mg or matching placebo in a blinded fashion at weeks 0, 4 and 16 during the double-blind period. Study visits occurred at weeks 0, 4, 8, 12, 16 and 24. Patients who had not achieved ≥20% improvement in swollen and/or tender joint count at both weeks 12 and 16 could add or modify concomitant therapies. Except for the baseline and primary endpoint visits, study visits could be modified to accommodate COVID-19-related restrictions; these included out-of-window study visits, phone calls and/or at-home visits for patients unable to attend onsite visits. The study drug was not administered to patients with suspected or confirmed COVID-19 infection; study drug administration and study visits could be resumed after patients recovered from infection.

This study was conducted in accord with the protocol, operations manual, International Council for Harmonisation guidelines, applicable regulations and guidelines governing clinical study conduct and the ethical principles that have their origin in the Declaration of Helsinki. The study protocol, informed consent document and all study materials were reviewed and approved by the independent ethics committee or institutional review board. All patients provided written informed consent to participate in the study.

Patient and public involvement

Patients and/or the public were not involved in the design, conduct, reporting or dissemination plans of this research.

Patients

Eligible patients were adults (aged ≥18 years) with active PsA (symptom onset ≥6 months, meeting the Classification Criteria for Psoriatic Arthritis, ≥5 of 68 tender and ≥5 of 66 swollen joints, ≥1 erosion based on centrally read radiographs (hands and/or feet) or high-sensitivity C reactive protein (hsCRP) ≥3.0 mg/L and active plaque psoriasis (≥1 psoriatic plaque(s) of ≥2 cm in diameter or nail psoriasis)). All patients had experienced an inadequate response, intolerance or contraindication to ≥1 csDMARD (csDMARD-IR). Continuation of concomitant therapy with ≤2 csDMARDs at protocol-approved doses was allowed. No prior exposure to biologics was permitted; however, prior exposure to targeted synthetic disease-modifying antirheumatic drug was allowed.

Assessments

Efficacy assessments

The primary endpoint was the proportion of patients who achieved ≥20% improvement in American College of Rheumatology criteria (ACR20) at week 24. Multiplicity-controlled ranked secondary endpoints included (1) change from baseline in Health Assessment Questionnaire-Disability Index (HAQ-DI); (2) proportion of patients who achieved ≥90% reduction in Psoriasis Area and Severity Index 90 (PASI 90); (3) proportion of patients who achieved ACR20 at week 16; (4) proportion of patients who achieved minimal disease activity (MDA); (5) change from baseline in modified Nail Psoriasis Severity Index (mNAPSI), a composite score incorporating grading (0–3) of pitting, onycholysis and oil-drop dyschromia and crumbling and absence/presence (0/1) of leukonychia, splinter haemorrhages, hyperkeratosis and red spots in the lunula; (6) change from baseline in Physician’s Global Assessment of Fingernail Psoriasis Score (PGA-F), based on the worse of nail bed or nail matrix signs of disease severity (0 (clear) to 4 (severe)); (7) proportion of patients who achieved resolution of enthesitis (Leeds Enthesitis Index=0); (8) prespecified analysis of pooled data from KEEPAKE 1 and KEEPAKE 2; (9) proportion of patients who achieved resolution of dactylitis (Leeds Dactylitis Index=0); (10) proportion of patients who achieved resolution of psoriasis (≥2 cm × 1 cm) (hypochromia, hyperkeratosis and red spots in lunula 6); (6) change from baseline in PsA-modified Total Sharp Score (PsA-mTSS); (10) change from baseline in 36-Item Short-Form Health Survey Physical Component Summary (SF-36 PCS) score; and (11) change from baseline in Functional Assessment of Chronic Illness Therapy-Fatigue Questionnaire (FACIT-Fatigue) score. Except for ACR20 at week 16, all ranked secondary endpoints were evaluated at week 24. Non-ranked secondary endpoints included the proportions of patients who achieved ≥50% and ≥70% improvement in ACR criteria (ACR50/70) at week 24. Post hoc analyses included the proportions of patients who achieved Disease Activity in Psoriatic Arthritis (DAPSA) remission (REM; DAPSA score ≤4), low disease activity (LDA) + REM (DAPSA score ≤14), ≥50% and ≥85% reduction in DAPSA.

Safety assessments

Safety was evaluated throughout the study and included adverse event (AE) monitoring, physical examinations, vital sign measurements and clinical laboratory testing for haematology and chemistry. An independent data monitoring committee periodically reviewed unblinded safety data until the week 24 interim analysis.

Statistical analysis

A sample size of 440 patients per treatment group was estimated to provide ≥90% power to detect a ≥25% difference in ACR20 response rates, assuming a placebo response rate of 35%. This sample size was estimated to provide approximately 80% power to detect a standardised effect size of 0.20 in change from baseline in PsA-mTSS.

Efficacy analyses were conducted on the full analysis set, which included all randomised patients who received one or more doses of the study drug. For categorical efficacy endpoints, missing data unrelated to COVID-19 were handled by non-responder imputation, and missing data due to COVID-19 (infection or...
logical restrictions) were handled by multiple imputation. Observations after patients initiated rescue therapy or concomitant medications for PsA that could have meaningfully impacted efficacy assessments were imputed as non-responders (categorical endpoints) or considered as missing and excluded from the model (continuous endpoints). Categorical efficacy endpoints were compared using the Cochran-Mantel-Haenszel test with adjustment for stratification factors. Continuous efficacy endpoints were analysed using mixed-effect model for repeated measures incorporating factors of treatment, visit, stratification factors and baseline values. Radiographic endpoints were analysed using an analysis of covariance model incorporating linear extrapolation to impute missing data or data after discontinuation of study drug or initiation of rescue medication. To increase sample size due to the smaller number of patients with enthesis and dactylitis at baseline, data for the resolution of enthesitis and dactylitis were pooled from KEEPsAKE 1 and KEEPsAKE 2 (prespecified); these analyses were adjusted for common stratification factors and study. All primary and ranked secondary efficacy endpoints were tested with multiplicity adjustment via the Bonferroni correction due to the smaller number of patients with enthesitis and dactylitis at baseline, data for the resolution of enthesitis and dactylitis were pooled from KEEPsAKE 1 and KEEPsAKE 2 (prespecified); these analyses were adjusted for common stratification factors and study. All primary and ranked secondary efficacy endpoints were tested with multiplicity adjustment via the Bonferroni correction due to the smaller number of patients with enthesitis

RESULTS

Patients

A total of 964 patients were enrolled at 186 sites in 38 countries, and 97.5% completed the double-blind period between 25 March 2019 and 8 October 2020 (figure 1). No patients withdrew due to COVID-19 infection, and three patients (<0.3%) withdrew due to COVID-19 logistical restrictions. Less than 3% of patients in either group had missing data due to COVID-19 or the primary and all secondary endpoints (online supplemental table S1).

Demographical and baseline characteristics were generally balanced between groups (table 1). Patients were considered csDMARD-IR based on inadequate response (85.2%), intolerance (14.4%) or contraindication (0.4%) to prior therapy with ≥1 csDMARD. csDMARDs used previously by >10% of patients included methotrexate (89.9%), sulfasalazine (21.3%) and leflunomide (12.8%). The proportion of patients using concomitant csDMARDs was similar between the risankizumab and placebo groups (76.0% vs 76.7%); and of concomitant csDMARDs, only methotrexate was reported for >10% of patients (61.6%).

Figure 1 Patient disposition. PBO, placebo; RZB, risankizumab.
Efficacy assessments

A significantly greater proportion of patients treated with risankizumab versus placebo achieved the primary endpoint of ACR20 at week 24 (57.3% vs 33.5%; p<0.001; table 2) and the secondary endpoint of ACR20 at week 16 (56.3% vs 33.4%; p<0.001; table 2). ACR component results at week 24 are shown in online supplemental table S2. Higher ACR20 response rates were observed at week 24 in patients treated with risankizumab versus placebo in all prespecified subgroups defined by demographics (eg, age, sex, race, body mass index), baseline disease characteristics (eg, duration of PsA, presence of enthesitis, presence of dactylitis) and use of prior or concomitant therapy as analysed using the Cochran-Mantel-Haenszel test. Specifically, higher ACR20 response rates were observed in patients treated with risankizumab versus placebo, regardless of whether patients received concomitant csDMARDs (57.9% vs 35.9%) or risankizumab as monotherapy (55.3% vs 26.2%) in online supplemental table S3.

Rapid improvements in PsA signs and symptoms were observed in patients treated with risankizumab. After a single dose, a greater proportion of patients in the risankizumab group achieved ACR20 at week 4 than did patients in the placebo group; this result persisted through week 24 (figure 2A). Similar outcomes were observed for ACR50 and ACR70, as greater proportions of patients treated with risankizumab versus placebo achieved these endpoints at week 24 (nominal p value <0.001 for both; table 2); greater improvement was observed for patients receiving risankizumab compared with placebo by week 4 for ACR50 (figure 2B) and week 8 for ACR70 (figure 2C).

Among patients with enthesitis and/or dactylitis at baseline in the KEEPsAKE 1 and KEEPsAKE 2 studies (prespecified pooled analyses), greater proportions of patients treated with risankizumab versus placebo achieved resolution of their enthesitis or dactylitis (p<0.001 for both). Unpoled results from KEEPsAKE 1 for these endpoints were consistent with the pooled results, demonstrating greater improvement with risankizumab versus placebo (resolution of enthesitis, 51.2% vs 37.2%; nominal p<0.001; resolution of dactylitis, 42.2% vs 26.4%; nominal p=0.05). Changes from baseline in PsA-mTSS were not different between patients treated with risankizumab versus placebo (table 2). The proportion of patients demonstrating no radiographic progression (change from baseline of PsA-mTSS <0 or PsA-mTSS <0.5) is provided in online supplemental table S4.

Among patients with ≥3% body surface area affected by psoriasis at baseline, a significantly greater proportion of patients treated with risankizumab versus placebo achieved PASI 90 (52.3% vs 9.9%; p<0.001; table 2); differences were observed starting at week 8 and persisted through week 24 (figure 3). Significantly greater improvements in nail outcomes (mNAPSI and PGA-F) were observed for patients treated with risankizumab versus placebo among patients with psoriatic nail disease at baseline (p<0.001 for both; table 2).

Patients treated with risankizumab demonstrated improved physical function as evidenced by a significantly greater decrease from baseline in HAQ-DI (p<0.001; table 2). In a prespecified analysis of patients with HAQ-DI ≥0.35 at baseline, a greater percentage of patients achieved the minimal clinically important difference in HAQ-DI (improvement ≥0.35 from baseline) at week 24 in the risankizumab group (50.3%) compared with the placebo group (27.9%; nominal p≤0.001). In addition, greater improvements from baseline were observed for both SF-36 PCS and FACIT-Fatigue.
Psoriatic arthritis

in the risankizumab group compared with the placebo group (nominal p<0.001 for both).

Significantly greater proportions of patients treated with risanki-

zumab versus placebo achieved MDA, a comprehensive measure of
disease activity, at week 24 (25.0% vs 10.2%; p<0.001; table 2). Post hoc analyses of DAPSA outcomes (REM and LDA+REM, ≥50% and ≥85% score reductions) are reported in online supple-
mental table S5.

Safety

Treatment-emergent adverse events (TEAEs) were reported at similar frequencies in the risankizumab and placebo groups (40.4% and 38.7%, respectively; table 3). Most TEAEs were mild or moderate. Serious AE rates were comparable between groups. One death was reported for an 81-year-old male patient with dementia in the risankizumab group; the patient was hospitalised for pneu-
monia (week 8), subsequently developed urosepsis and died during week 13. One patient in the risankizumab group and two in the placebo group experienced COVID-19-related TEAEs. TEAEs leading to study drug discontinuation were rare (0.8% of patients in either group). TEAEs reported for ≥2% of patients in either group included nasopharyngitis, upper respiratory infection, increased alanine transaminase, increased aspartate transaminase and head-
ache; all were reported at similar frequencies for patients in both groups (table 4).

Rates of AEs of safety interest were low and generally comparable between groups (table 3). However, injection site reactions were more frequently reported for patients in the risankizumab group; none of the reactions were serious, and no anaphylactic reactions were reported. Serious infections were reported for five patients in the risankizumab group and six patients in the placebo group.

Table 3

<table>
<thead>
<tr>
<th>Safety summary</th>
<th>RZB 150 mg</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, n (%)</td>
<td>RZB 150 mg N=483</td>
<td>Placebo N=481</td>
</tr>
<tr>
<td>TEAE†</td>
<td>195 (40.4)</td>
<td>186 (38.7)</td>
</tr>
<tr>
<td>COVID-19-related TEAE*</td>
<td>1 (0.2)</td>
<td>2 (0.4)</td>
</tr>
<tr>
<td>Serious AE*</td>
<td>12 (2.5)</td>
<td>18 (3.7)</td>
</tr>
<tr>
<td>Severe TEAE*</td>
<td>10 (2.1)</td>
<td>9 (1.9)</td>
</tr>
<tr>
<td>TEAE leading to discontinuation of study drug</td>
<td>4 (0.8)</td>
<td>4 (0.8)</td>
</tr>
<tr>
<td>Death</td>
<td>1 (0.2)</td>
<td>0</td>
</tr>
<tr>
<td>Serious infections‡</td>
<td>5 (1.0)</td>
<td>6 (1.2)</td>
</tr>
<tr>
<td>Active tuberculosis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Herpes zoster§</td>
<td>2 (0.4)</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Any other opportunistic infections</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malignancy</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anaphylactic reactions</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Injection site reactions¶</td>
<td>3 (0.6)</td>
<td>0</td>
</tr>
<tr>
<td>MACE</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Except for pneumonia, which was reported for two patients (0.4%) in the placebo group, no serious AE or severe TEAE was reported for >1 patient in either group.
†One death (urosepsis) in an 81-year-old male patient.
‡HZB: urosepsis (one patient, resulting in death), cellulitis (one patient), gastroenteritis (one patient), COVID-19 pneumonia (one patient) and viral upper respiratory tract infection leading to pneumonia (one patient); placebo: pneumonia (two patients), oral bacterial infection (one patient), dysentery (one patient), appendicitis (one patient) and cellulitis (one patient).
§All non-serious, resolved with oral antiviral agents and did not result in discontinuation of the study drug.
¶All non-serious and did not result in discontinuation of the study drug.
MACE, major adverse cardiovascular event; RZB, risankizumab; TEAE, treatment-emergent AE.

Figure 2 ACR responses over time. (A) ACR20, (B) ACR50 and (C) ACR70 response rates for risankizumab 150 mg and placebo over the 24-week, double-blind treatment period. ACR20/50/70, ≥20%/50%/70% improvement in American College of Rheumatology score; PBO, placebo; RZB, risankizumab. ***P≤0.001 versus PBO. ¹Statistically significant under overall type I error control. **P≤0.01.

Figure 3 PASI 90 response over time. Among patients with ≥3% body surface area affected by psoriasis at baseline. PASI 90, ≥90% reduction in Psoriasis Area and Severity Index; PBO, placebo; RZB, risankizumab. ***P≤0.001 versus PBO. ¹Statistically significant under overall type I error control.
Psoriatic arthritis

Herpes zoster was reported for two patients receiving risankizumab and one patient receiving placebo; all were non-serious, resolved with oral antiviral treatment and did not result in treatment discontinuation. No active tuberculosis or other opportunistic infections were reported. No malignancies were reported for patients receiving risankizumab; one event each of breast cancer and non-small-cell lung cancer was observed in the placebo group.

Mean changes in haematology and clinical chemistry (except liver function tests) were small, not clinically meaningful and comparable between the risankizumab and placebo groups. Grade 3 transaminase elevations (based on Common Terminology Criteria for Adverse Events version 4.03) were reported for <2% of patients in either group (nine patients receiving risankizumab and four patients receiving placebo). Grade 3 transaminase elevations in the nine patients receiving risankizumab were transient and were not accompanied by elevations in bilirubin. Grade 3 transaminase elevations in eight of the nine patients either (1) coincided with initiation of isoniazid or fenofibrate or (2) occurred in patients with underlying medical conditions of hepatic steatosis or hepatic cytolysis syndrome. The remaining patient had grade 1 and grade 2 transaminase levels at screening and baseline and experienced a single grade 3 elevation on study day 57. Subsequent transaminase levels for this patient were at or below baseline levels while the patient continued to receive risankizumab.

DISCUSSION

Currently available csDMARDs demonstrate variable efficacy in treating the diverse clinical manifestations of PsA, and additional therapeutic agents are needed to address the range of rheumatological and dermatological signs and symptoms of disease. At week 24 of the phase 3 KEEPsAKE 1 study, risankizumab 150 mg significantly improved clinical manifestations of PsA in patients who had an inadequate response or were intolerant to one or more csDMARDs, as evidenced by the achievement of the primary efficacy endpoint (ACR20) and secondary endpoints evaluating physical function, skin and nail psoriasis and resolution of enthesis and dactylitis.

Evidence of improved joint symptoms (ACR20/50/70) was observed at early time points and increased over time through week 24. Risankizumab was effective, regardless of concomitant csDMARD therapy, as similar efficacy rates were observed in patients treated with risankizumab as monotherapy or in combination with one or more csDMARDs. Risankizumab treatment also markedly reduced hsCRP levels. Across KEEPsAKE 1 and KEEPsAKE 2, significantly greater proportions of patients treated with risankizumab versus placebo achieved resolution of dactylitis and enthesis. There was no difference in change from baseline in PsA-mTSS between groups at week 24.

Risankizumab treatment led to the achievement of PASI 90 in over 50% of patients with ≥3% of body surface area affected by psoriasis at baseline. Many patients with PsA have psoriatic nail disease, which is associated with substantial disease burden and negatively impacts quality of life. Risankizumab treatment resulted in significant improvements from baseline in nail psoriasis (mNAPSI and PGA-F) among patients with psoriatic nail disease at baseline.

Significantly greater improvements in HAQ-DI and greater improvements in SF-36 PCS and FACIT-Fatigue scores demonstrate the benefits of risankizumab treatment on physical function. Together, these findings support the potential for risankizumab treatment to reduce the substantial patient burden of PsA.

By week 24, 25% of patients treated with risankizumab versus 10% in the placebo group had achieved MDA, a comprehensive measure of PsA activity and a recommended target for PsA treatment when using a treat-to-target approach, further demonstrating the efficacy of risankizumab to treat the varied manifestations of PsA.

Risankizumab was generally well tolerated over 24 weeks of treatment. Notably, rates of opportunistic infection (ie, herpes zoster) were low with no reported cases of candidiasis or active tuberculosis. This safety profile is consistent with safety findings in previous studies of risankizumab in patients with psoriasis and and no new safety concerns were identified.

Several therapeutics targeting the IL-23/IL-17 pathway are approved to treat PsA. Risankizumab’s mechanism of action, specifically targeting the p19 subunit of IL-23, has been previously established and the KEEPsAKE 1 study results further support this mechanism of action for the treatment of PsA. The demonstrated efficacy and consistent safety profile of risankizumab, along with a 3-month dosing interval, further support the value of risankizumab as a treatment option for patients with PsA.

This study is being conducted during the COVID-19 pandemic. COVID-19-related logistical restrictions have been well managed, and completion of the double-blind period was not affected. Few patients had missing data due to COVID-19, and missing data did not impact efficacy conclusions. Further, there were no serious COVID-19-related safety issues. This study is currently limited by the availability of short-term data; the ongoing extension study will evaluate the maintenance of efficacy and long-term safety. The generalisability of these results may be limited by enrolment of the study population by requiring ≥5% tender and ≥5 swollen joints and at least one erosion based on centrally read radiograph or hsCRP ≥3.0 mg/L.

In summary, results from the 24-week double-blind portion of the KEEPsAKE 1 trial demonstrate that risankizumab is well tolerated and effective for treating diverse clinical manifestations of PsA in patients who have had an inadequate response or intolerance to csDMARD therapy. Risankizumab may provide an additional therapeutic option for patients in whom standard therapies are inadequate.

Acknowledgements

AbbVie participated in the study design; study research; collection, analysis and interpretation of data; and writing, reviewing, and approving this manuscript. All authors had access to the data and participated in the development, review, approval and decision to submit this manuscript for publication. AbbVie and the authors thank all study investigators for their contributions and the patients who participated in this study. AbbVie funded the study.
research for this study and provided writing support for this manuscript. Medical writing assistance, funded by AbbVie, was provided by Lisa M Pitchford, PhD, of JB Ashtin.

Contributors All authors critically reviewed this manuscript and provided final approval for publication. LEK, FB, AMS, AE and LB participated in data interpretation. LEK, FB, MK, KP, LM and DW participated in data acquisition. AMS, AE and LB participated in study concept/design. WL and ZW participated in statistical analysis.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests LEK has received honoraria or fees for serving as a speaker or consultant from AbbVie, Amgen, Biogen, Bristol-Myers Squibb, Gilead, Janssen, Lilly, Merck, Novartis, Pfizer and UCB. He has received investigator-initiated study grants from AbbVie, Biogen, Janssen, Lilly, Novartis, Pfizer and UCB. MEK has received honoraria or fees for serving on advisory boards, as a speaker or as a consultant, and has received grants as a principal investigator from AbbVie, Amgen, Bristol-Myers Squibb, Celgene, GlaxoSmithKline, Janssen, Novartis, Pfizer, Roche and UCB. KP has received honoraria or fees for serving on advisory boards as a speaker and as a consultant, as well as grants as principal investigator from AbbVie, Amgen, Astellas, Bausch Health (Valeant), Baxalta, Baxter, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Coherus, Dermira, EMD Serono, Forward Pharma, Galderma, Genentech, GlaxoSmithKline, Janssen, Kyowa Kirin, LEGO Pharma, Lilly, MedImmune, Merck, Novartis, Pfizer, Regeneron, Roche, Sanofi Genzyme, Stiefel, Sun Pharma, Takeda and UCB. LM has received fees for serving on an advisory board from Lilly. DW has received honoraria or fees for serving on advisory boards, as a speaker and as a consultant, from AbbVie and Novartis. WL, ZW, AMS, AE and LB are full-time employees of AbbVie and may hold AbbVie stock or stock options. AMS is listed as an inventor on some AbbVie patents. FB has received research grants, honoraria or fees for serving as a consultant or speaker from AbbVie, Amgen, Boehringer Ingelheim, Celgene, Chugai, Galapagos, Genzyme, Gilead, GlaxoSmithKline, Janssen, Lilly, Merck, Novartis, Pfizer, Roche and Sanofi.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement AbbVie is committed to responsible data sharing regarding the clinical trials we sponsor. This includes access to anonymised, individual and trial-level data (analysis data sets), as well as other information (eg, protocols and clinical study reports), as long as the trials are not part of an ongoing or planned regulatory submission. This includes requests for clinical trial data for unlicensed products and indications. This clinical trial data can be requested by any qualified researchers who wish to conduct independent, scientific research and will be provided following review and approval of a research proposal and statistical analysis plan and execution of a data sharing agreement. Data requests can be submitted at any time and the data will be accessible for 12 months, with possible extensions considered. For more information on the process, or to submit a request, visit the following link: https://www.abbvie.com/our-science/clinical-trials/clinical-trials-data-and-information-sharing/data-and-information-sharing-with-qualified-researchers.html

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES