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Abstract
From birth, humans coexist and coevolve with trillions 
of micro-organisms inhabiting most body surfaces and 
cavities, referred to as the human microbiome. Advances 
in sequencing technologies and computational methods 
have propelled the exploration of the microbiome’s 
contribution to human health and disease, spearheaded 
by massive efforts such as the Human Microbiome 
Project and the Europe-based MetaHit Consortium. Yet, 
despite the accumulated body of literature and a growing 
awareness among patients, microbiome research in 
rheumatology has not had a key impact on clinical 
practice. Herein, we describe some of the landmark 
microbiome studies in autoimmunity and rheumatology, 
the challenges and opportunities of microbiome research 
and how to navigate them, advances in related fields 
that have overcome these pitfalls, and future directions 
of harnessing the microbiome for diagnostic and 
therapeutic purposes.

Introduction
Humans have coevolved with and harbour tril-
lions of microbes from the time they are born. This 
collection of symbiotic, commensal and pathogenic 
micro-organisms (and their genomes) found on the 
skin, mucosal surfaces and other organs is referred 
to as the human microbiome, a term coined by 
the Nobel laureate, Joshua Lederberg (figure  1).1 
Although mostly resilient during the adult life, the 
composition of the microbiome can be influenced 
by numerous factors, including genes, age, sex, 
mode of delivery, nursing, diet, drugs (prescrip-
tion and non-prescription), and pets, to name a 
few.2 3 Previously, the ability to define these micro-
bial communities was limited to classic culturing 
techniques, which were able to isolate up to 20% of 
the microbes known today.4 This situation dramat-
ically changed with the democratisation of next-
generation sequencing technologies, which allowed 
for a higher proportion of organisms to be identi-
fied, including bacteria, fungi and viruses.

Through the use of these technologies and 
advanced computational analytics, we are now able 
to obtain an enormous amount of sequence data 
in each run, and have an efficient way of profiling 
microbial communities from different sources. 
The typical workflow involves obtaining samples 
of interest, isolating DNA from these samples and 
performing DNA sequencing of microbial taxa. 
This is done by either querying a marker gene, such 
as 16S rRNA for bacteria or internal transcribed 
spacer (ITS) for fungi, or looking at the DNA in 
its entirety via shotgun metagenomic sequencing, 
which allows for the characterisation of gene fami-
lies and pathways.3 With the development of more 
sophisticated modalities, we now have the ability 

to profile gene expression (metatranscriptomics), 
proteins (metaproteomics) and metabolites (metab-
olomics) collectively produced by the microbiota.5 6

In 2007 the National Institutes of Health (NIH) 
launched the landmark Human Microbiome Project 
(HMP),7 which was followed by the Europe-based 
MetaHit Consortium,8 two massive multicentre 
efforts that have propelled research on how 
microbes contribute to human health and disease 
(figure 1). In fact, this work revealed that the micro-
biome also plays a prominent role in autoimmune 
disease, as evidenced by the exponential growth 
of studies in virtually all realms of rheumatology 
over the last few years.9 Still, despite the extent and 
wealth of information that such a body of litera-
ture has yielded, microbiome research is yet to 
have a significant influence on clinical practice (eg, 
enabling drug discovery or patient stratification).10 
In fact, some of the results have been correlative in 
nature, hampering their translation into the clinical 
setting. However, due to its popularity, discussion 
of the microbiome has percolated into conversa-
tions with patients, and in some cases has resulted 
in dietary and behavioural modifications. Here, we 
describe the advances in rheumatology, enumerate 
the type of research that should be pursued and 
what should generally be avoided, review how 
other disciplines have overcome these challenges, 
and look into the microbiome-based diagnostic and 
therapeutic pipeline.

What is known about the microbiome in 
autoimmune diseases
Numerous studies of animal models and humans 
have demonstrated a link between the microbiome 
and autoimmunity. For instance, a wide range of 
animal models for inflammatory arthritis remain 
healthy when raised under germ-free conditions, 
only developing their respective phenotypes when 
exposed to particular microbes. Examples include 
the HLA-B27 transgenic rat,11 the interleukin (IL) 1 
receptor antagonist knockout (IL1rn−/−) mouse,12 
the K/BxN T cell receptor transgenic mouse (which 
expresses the KRN T cell receptor transgene and 
the MHC class II molecule Ag7)13 and the SKG 
mouse (which has a mutation in the Src homology 
2 domain of zeta-chain-associated protein kinase 70 
[ZAP-70]).14 These data have confirmed and vali-
dated the fact that intestinal microbiota are indeed 
required to trigger and drive systemic autoimmunity.

Similarly, studies of human autoimmune disease 
consistently characterise a state of microbial dysbi-
osis, a disruption in the homoeostasis of microbial 
communities and composition.15 Perhaps the most 
established connection is in rheumatoid arthritis 
(RA), where microbes were identified as potential 
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Figure 1  Historical time line of key events in microbiome research in rheumatology. Photo acknowledgements: 1894: https://www.efp.org/patients/
what-is-periodontitis.html; 1905: https://www.acponline.org/about-acp/about-internal-medicine/sir-william-osler-and-internal-medicine; 1916: https://
fr.wikipedia.org/wiki/No%C3%ABl_Fiessinger; 1990: https://www.dreamstime.com/stock-photos-grey-rat-isolated-white-image30500173; 1991: 
https://www.medicinenet.com/helicobacter_pylori/article.htm; 2001: https://www.nationalmedals.org/laureates/joshua-lederberg; 2007–2008: http://
gutcyc.org/aboutGutCyc; 2013: https://www.theatlantic.com/health/archive/2015/01/joint-pain-from-the-gut/383772/; 2015: https://www.gponline.
com/clinical-review-ulcerative-colitis-epidemiology-diagnosis-management/gi-inflammatory-bowel-disease/ulcerative-colitis/article/1293409; 2017: 
https://www.merckmanuals.com/home/bone,-joint,-and-muscle-disorders/joint-disorders/psoriatic-arthritis.

contributors to disease as early as the 19th century. Sir William 
Osler attributed RA to tuberculosis,16 the toxaemic factor theory 
proposed that gut micro-organisms produced substances respon-
sible for joint inflammation,17 and a connection between RA and 
periodontitis (PD) was established as early as 1894 (figure 1).18 
More recently, Porphyromonas gingivalis, an oral anaerobe 
involved in the development of PD, was found to be highly prev-
alent in patients with RA,19demonstrating positive serological 
correlation with anticitrullinated peptide antibody titres,20 21 
considered to be triggers for RA. Interestingly, peptidylarginine 
deaminase 4, an enzyme that catalyses citrullination, has also 
been identified as a contributor to RA pathogenesis.22–25 Distinct 
microbial perturbations exist in the gut as well, with expansion 
of Prevotella copri in untreated patients with new-onset RA,26a 
microbe that can induce an intestinal Th17 response leading to 
severe arthritis in SKG mice (figure 1).27 Evidence for P. copri 
involvement in pathogenesis derives from the identification of 
reactivity against a P. copri peptide in human RA and an associ-
ated Th1 response,28 providing a plausible mechanistic link.

The gut-joint axis is likewise involved in several conditions 
under the spondyloarthritis (SpA) umbrella classification. In the 
HLA-B27 transgenic rat model of SpA there is a marked intes-
tinal dysbiosis,29 30 which is linked to enhanced expression of 
Th1 and Th17 cytokines, expansion of Th17 cells in the colonic 
mucosa, and increased production of bacteria-specific IgA.30 
These perturbations are highly dependent on host genetic back-
ground.31 In humans, the most obvious examples of the gut-joint 
connection are reactive arthritis, described in 1916 by Noël 
Fiessinger and Emile Leroy,32 which results after infection by 
enteropathogenic (and uropathogenic) bacteria,33 and entero-
pathic arthritis, described in 1929 by J Arnold Bargen,34 which 
is a sequala of inflammatory bowel disease (IBD) and can parallel 
colitis exacerbations (figure 1).35 Another example is ankylosing 
spondylitis, where terminal ileal biopsies demonstrate distinct 
microbial signatures driven by several core families of bacteria.36 
In paediatric enthesitis-related arthritis, a type of juvenile SpA, 
there is reduction of intestinal Faecalibacterium prausnitzii 
(similar to IBD),37 a gut commensal that produces the short-
chain fatty acid (SCFA) butyrate,38 which is known to promote 
the expansion of T-regulatory cells.39 In psoriatic arthritis (PsA), 
our group has demonstrated a significant reduction of two 
gut commensals, Akkermansia and Ruminococcus, correlating 
with higher levels of intestinal secretory IgA and lower levels 

of receptor activator of nuclear factor κ-B ligand, as well as 
reduction of local anti-inflammatory medium-chain fatty acids 
(MCFAs), hexanoate and heptanoate.40

Systemic lupus erythematosus (SLE) is also characterised 
by microbial perturbations. One of the earliest investigations 
showed decreased gut bacterial diversity and a lower Firmic-
utes:Bacteroidetes ratio in patients with SLE.41 Other relatively 
small studies have also demonstrated gut bacterial dysbiosis in 
SLE,42–48 mostly corroborating previous findings. Intriguingly, 
similar to RA, translocation of intestinal pathobionts was like-
wise noted with the description of Enterococcus gallinarum in 
liver biopsies of patients with SLE.49 Furthermore, new evidence 
in mice and humans suggests that translocation of commensal 
orthologs of a human autoantigen, such as Ro60, can drive auto-
immunity and may be a factor in SLE pathogenesis.50

There is far less evidence for microbiome involvement in 
systemic sclerosis. The majority of research to date has char-
acterised gut microbial communities in those with and without 
disease,51–55 focusing on the dysbiosis in patients with gastro-
intestinal features of systemic sclerosis. Many of the studies 
found decreased gut bacterial diversity and lower levels of ‘anti-
inflammatory’ microbiota such as Bacteroides, Faecalibacterium 
and Clostridium, as well as higher levels of pathobionts such as 
Fusobacterium.52–55

Navigating and addressing challenges in microbiome research
As discussed, although murine work has established a definite 
role for microbiome contribution to rheumatological conditions, 
the majority of human studies have been correlative in nature 
and therefore unable to distinguish whether dysbiosis precedes 
disease onset or is rather a consequence of the inflammatory 
process. Furthermore, very few studies propose a mechanism 
for pathogenesis. In general, microbiome experiments require 
thoughtful and thorough planning in order to generate data 
that are robust and reproducible, enabling their applicability in 
the clinic (table  1). Starting with experimental design, in lieu 
of performing exploratory correlative studies, the field should 
aim to answer particular questions that will preferably have a 
direct impact on patient care. In planning a microbiome exper-
iment, it is also critical to select the appropriate control popu-
lation and account for factors that may influence or confound 
the data, including host genes,56 57 age58 59 and sex,60 as well 
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Table 1  Dos and don’ts in microbiome research

Dos Don’ts

Specific hypothesis designed to answer a clinically relevant question Exploratory correlative surveys

Appropriate control populations No control population

Incorporation of factors that influence microbiome data (ie, host genes, age, sex, diet, drugs) No acknowledgement of potential confounders

Longitudinal study design Cross-sectional study design

Large cohort Small cohort

Consistent storage and processing of samples Ad hoc storage and processing of samples

Accounting for potential contamination of low biomass samples Processing low biomass samples in the same manner as high biomass samples

Correction for multiple hypothesis testing No correction for multiple hypothesis testing

Publishing raw data and detailed methods (including code) for obtaining results Not making raw data and detailed methods publicly available

Interdisciplinary team Lack of expertise

Multiomic approach Approach focused on 16S rRNA data

Discovery and validation cohorts Only discovery cohort

Preserving samples Discarding samples once study is complete

as environmental variables such as diet61 and drugs (even those 
without antibiotic or antimicrobial properties).62 In animal 
experiments, cage effects63 and facilities64 have a significant 
influence on the data and should be treated as separate variables 
of interest. Due to potential fluctuations in the microbiome, 
possibly related to disease flare/activity65 66 and/or treatment,67 
characterising the microbiome in a longitudinal fashion is of 
utmost importance (instead of assessing a single cross-sectional 
time point). Most importantly, many microbiome experiments 
are performed on small cohorts, leading to conclusions that are 
based on statistically invalid methodology. It is therefore critical 
to estimate adequate sample sizes a priori in order to sufficiently 
power these studies for the identification of biologically relevant 
patterns. This may be challenging given the lack of consensus 
on appropriate power analyses for microbiome studies. Never-
theless, several approaches have been proposed based on the 
detection of differences in α/β diversity and taxa relative abun-
dance.68 Furthermore, the need to incorporate confounding 
variables typically necessitates larger sample sizes, which may be 
difficult to achieve, particularly in the case of the rarest condi-
tions in rheumatology. An effective way to overcome this hurdle 
is through multicentre study designs and data sharing.

Once collected, samples should ideally be stored in a consis-
tent fashion, processed at the same time with identical reagents 
and kits, and sequenced in single runs to avoid batch effect. The 
HMP Manual of Procedures provides detailed protocols for 
performing these steps.69 Positive and negative controls should 
always be used with every sequencing run. Low biomass samples, 
such as those derived from skin surface and lung fluid, present 
an extra challenge as they are prone to contamination from 
reagents and sensitive to sequencing conditions, thus requiring 
careful handling and the use of dedicated instruments.3 Post-
sequencing, certain software packages and computational 
methods may be employed to decrease background noise in low 
biomass data. In the analysis phase, comparisons are typically 
made across hundreds of identified taxa so multiple hypothesis 
testing must be accounted for by using statistical methods such as 
false discovery rate or Bonferroni corrections.70 71 Once results 
are obtained and published, the raw sequence data (including 
controls), a description of the detailed analyses, as well as any 
code written to generate results should be made publicly avail-
able through repositories such as the Sequence Read Archive,72 
the European Nucleotide Archive73 and GitHub.74 This allows 
for cross-validation and incorporation of data in future studies. 

Unused samples should also be stored to answer future questions 
that originate from current research efforts.

To produce more meaningful generalisable outcomes, it is 
essential to collaborate with an interdisciplinary team that can 
address questions of biological/clinical relevance, computational 
complexity and appropriate statistical models. Moreover, simply 
using DNA sequencing to look at the presence of taxa in certain 
conditions is now considered outdated and rather rudimentary. 
Cost permitting, the field should instead aim to design studies 
that explore the entire milieu of microbes (including bacteria, 
fungi and viruses, acknowledging recognised limitations such as 
the underdevelopment of comprehensive high-resolution refer-
ence databases for fungal and viral micro-organisms), microbe-
microbe interactions, metabolites produced by microbes, and the 
effect that they have on the host immune and metabolic system. 
This requires a multipronged approach that applies shotgun 
and other multiomic sequencing platforms combined with more 
sophisticated computational analyses. Finally, generated results 
should be validated and reproduced in separate cohorts and 
backed preferentially by in vitro, ex vivo and in vivo data to 
look for recognisable patterns in order to enable a mechanistic 
understanding of the inflammatory process.

Advances in microbiome research
Despite these challenges, there have been pivotal advances in the 
oncology75 and IBD disciplines,76 where microbiome research has 
taken a more mechanistic approach beyond correlative descrip-
tions. In fact, the gut microbiome is increasingly recognised for 
its influence on cancer and response to cancer therapy.77 78 For 
example, there are data supporting the notion that recurrent 
antibiotic use may be associated with the development of malig-
nancies in various organs.79 However, the majority of studies that 
demonstrate a more causal role for the microbiome, aside from 
Helicobacter pylori-associated gastric cancer,80 are in colorectal 
cancer (CRC). First, microbial composition in tumor-affected 
tissue is distinct from that of adjacent healthy mucosa.81 82 
Second, and even more striking is that transplanting stool from 
patients with CRC can cause the formation of polyps, increase 
levels of intestinal dysplasia and alter the local immune envi-
ronment in animal models.83 Moreover, specific bacteria have 
been shown to directly stimulate inflammation and promote 
carcinogenesis, including enterotoxigenic Bacteroides fragilis84 
and Fusobacterium nucleatum.85 The intestinal microbiota are 
also key drivers for patient response to therapy, as exemplified 
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by immune checkpoint inhibitors used in the treatment of mela-
noma,86–88 where distinct differences exist between responders 
and non-responders that can be recapitulated in germ-free or 
antibiotic-treated animal models using faecal microbiota trans-
plantation (FMT) from patients.89

In IBD, which includes Crohn’s disease (CD) and ulcer-
ative colitis (UC), gut microbial dysbiosis is apparent in both 
the reduction of important gut commensals and the expan-
sion of pathogens. For example, a reduction of F. prausnitzii, 
an important producer of the SCFA butyrate (discussed earlier) 
is well documented in both CD90 and UC.91 Although specific 
bacterial pathobionts have not been consistently identified, there 
are indications of certain microbiota driving inflammation,92 
as well as an increased prevalence of Enterobacteriaceae such 
as invasive Escherichia coli.93 Several studies highlight the role 
of fungi, including the expansion of Candida albicans,94 95 an 
immunogen for anti-Saccharomyces cerevisiae antibodies, which 
serve as serological markers in IBD.96 Even the virome has been 
implicated with the expansion of Caudovirales bacteriophages 
in patients with IBD.97 Furthermore, due to its dynamic nature, 
one study looked at the longitudinal composition of the gut 
microbiome, demonstrating that microbial communities in IBD 
exhibit more fluctuations compared with healthy individuals.98 
Another study profiled and correlated the gut metagenomes 
and metatranscriptomes over a 1 year period, showing species-
specific biases in transcriptional activity with a predominance of 
F. prausnitzii-associated pathways that were disproportionate to 
F. prausnitzii abudnance.99 A number of investigations have also 
looked at adaptive immune responses to microbial agents and 
have shown that patients with IBD produce large amounts of 
IgG antibodies100 and CD4+ T-lymphocytes with altered IL-17A 
production101 directed against symbiotic bacteria.

IBD investigators have led the way in FMT research, which 
gained widespread interest after its success in treating refractory 
Clostridioides difficile (previously named Clostridium difficile) 
infections.102 103 FMT involves the transfer of minimally manip-
ulated prescreened stool from a donor to the gastrointestinal 
tract of a recipient via a nasogastric tube, colonoscopy, retention 
enema or capsule, with the aim of reversing a dysbiotic state and 
restoring beneficial microbiota.104 Four randomised controlled 
trials have been published looking at the efficacy of FMT in 
UC,105–108 showing an overall remission rate of 37%, which was 
twofold higher than patients receiving placebo,109 and equiva-
lent to outcomes with biological therapies (figure 1).110 To date, 
there have not been any randomised controlled trials of FMT 
use in CD, although a recent meta-analysis reports an overall 
rate of clinical remission,111 a finding that may be less interpre-
table given the heterogeneity of patient disease activity and FMT 
protocols.104

What the future holds: pharmacomicrobiomics and 
microbiome-modulating strategies in rheumatology
The field of rheumatology has also made advances with the 
potential to significantly impact the care of our patients. One 
example is the growing field of pharmacomicrobiomics, which 
describes the effects that microbial variations have on the action 
and toxicity of drugs (and vice versa).112 For instance, we know 
that the activation of sulfasalazine, a disease-modifying anti-
rheumatic drug used to treat inflammatory arthritis and UC, is 
dependent on the enzymatic cleavage by gut microbes.113 This 
appears to also hold true for methotrexate, which is known 
to be metabolised by the gut microbiome in mice114 115 and 
humans,116 and may have off-target, antibiotic effects.117 In axial 

SpA, patients who respond to anti-TNF inhibitors exhibit a more 
resilient pretreatment gut microbiome,118 while IL-17A inhib-
itors are associated with expansion of intestinal C. albicans in 
a subgroup of paients with SpA/PsA,67 as well as an increased 
risk for the development of candidiasis.119 120 Further progress 
in pharmacomicrobiomics will lead towards personalised thera-
peutic approaches that are based on patient microbiome features, 
allowing for improved selection of medications with the highest 
efficacy and lowest risk for toxicity.121

Another promising area of active research is the study of 
targeted modulation of the microbiome to improve disease 
outcomes, with the caveat that for most conditions, it is not yet 
clear whether microbial changes contribute to disease pathogen-
esis or stem from the disease process itself. One indirect way to 
modulate the microbiome is through diet, which can globally 
shape the microbial community composition. Few conclusive 
studies exist on the topic but some trials looking at the Medi-
terranean diet have demonstrated beneficial effects in RA.122 123 
In PsA, which is strongly associated with obesity and metabolic 
syndrome, weight loss has also led to significant improvements 
in disease outcomes.124 125 Another strategy relies on the use of 
prebiotics, compounds that promote the growth of advantageous 
microbes (ie, SCFAs and MCFAs), and probiotics, compounds 
that contain presumed beneficial living organisms. Prebiotics 
have demonstrated value in an animal model of SpA,126 while 
probiotics containing Lactobacillus have been associated with 
improvements in RA disease activity scores.127–129 As discussed, 
a more invasive approach that has yielded encouraging results is 
FMT, which directly modifies microbial communities and their 
metabolites, and may directly or indirectly stimulate the host 
immune response. No conclusive evidence exists in rheumatic 
disease as of yet, but this is currently being studied in PsA by 
the Danish-sponsored Efficacy and Safety of Fecal Microbiota 
Transplantation in Peripheral Psoriatic Arthritis clinical trial 
(figure  1).130 However, it is important to recognise that FMT 
has several important limitations. For instance, we do not know 
the best route of delivery (oral vs rectal) or the frequency of 
FMT needed to achieve durable responses. Likewise, we have 
not identified specific beneficial taxa that can reliably attenuate 
various autoimmune conditions, and it appears that previous 
successes in IBD may have been driven by ‘super-donors’ (ie, 
donors whose stool samples achieved successful outcomes).131 
Extensive donor testing is also required to guarantee safety as 
recent reports have indicated transmission of drug-resistant 
organisms from donors to recipients.132 133 Aside from FMT, 
other potential strategies, which are being extensively tested by 
the pharmaceutical industry but are yet to be Food and Drug 
Administration approved, are microbial consortia or microbially 
derived bioactive compounds for the treatment of infectious and 
autoimmune diseases.134

Conclusions
Microbiome research in rheumatology is expanding significantly, 
offering unique opportunities to better understand aspects of 
autoimmune disease pathogenesis, the potential for patient strat-
ification and its application towards personalised therapeutic 
strategies. However, in order to achieve its full potential, there 
is a need to further adapt state-of-the-art microbiome-related 
methods and technologies in our discipline. It is imperative to 
continue the quest for biologically relevant inquiries, addressing 
causality and designing studies that are important to patient 
care. The expansion of collaborations and data sharing is also 
critical to increase the sample size of our cohorts and apply the 
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appropriate expertise. It is equally important to broaden the 
scope of these studies to look at the global network of organ-
isms, their interactions and what they produce, so we can move 
beyond simplistic taxonomic classification work. Finally, the 
validation of microbiome-derived data should ensure mean-
ingful results that could potentially serve in diagnostics and 
therapeutics, aiding in the development of precision medicine 
approaches to optimise health outcomes in rheumatic and auto-
immune diseases.
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