2018 Update of the EULAR recommendations for the management of large vessel vasculitis

Bernhard Hellmich,1 Ana Agueda,2 Sara Monti,3 Frank Buttgereit,4 Hubert de Boysson,5 Elisabeth Brouwer,6 Rebecca Cassie,7 Maria C Cid,8 Bhaskar Dasgupta,9 Christian Dejaco,10,11 Gulen Hatemi,12 Nicole Hollinger,13 Alfred Mahr,14 Susan P Mollan,15,16 Chetan Mukhtyar,17 Cristina Ponte,18,19 Carlo Salvareni,20 Rajappa Sivakumar,21 Xinping Tian,22 Gunnar Tomasson,23 Carl Turesson,24 Wolfgang Schmidt,25 Peter M Villiger,26 Richard Watts,27 Chris Young,28 Raashid Ahmed Luqmani29

ABSTRACT

Background Since the publication of the European League Against Rheumatism (EULAR) recommendations for the management of large vessel vasculitis (LVV) in 2009, several relevant randomised clinical trials and cohort analyses have been published, which have the potential to change clinical care and therefore supporting the need to update the original recommendations.

Methods Using EULAR standardised operating procedures for EULAR-endorsed recommendations, the EULAR task force undertook a systematic literature review and sought opinion from 20 experts from 13 countries. We modified existing recommendations and created new recommendations.

Results Three overarching principles and 10 recommendations were formulated. We recommend that a suspected diagnosis of LVV should be confirmed by imaging or histology. High dose glucocorticoid therapy (40–60 mg/day prednisone-equivalent) should be initiated immediately for induction of remission in active giant cell arteritis (GCA) or Takayasu arteritis (TAK). We recommend adjunctive therapy in selected patients with GCA (refractory or relapsing disease, presence of an increased risk for glucocorticoid-related adverse events or complications) using tocilizumab. Methotrexate may be used as an alternative. Non-biological glucocorticoid-sparing agents should be given in combination with glucocorticoids in all patients with TAK and biological agents may be used in refractory or relapsing patients. We no longer recommend the routine use of antiplatelet or anticoagulant therapy for treatment of LVV unless it is indicated for other reasons.

Conclusions We have updated the recommendations for the management of LVV to facilitate the translation of current scientific evidence and expert opinion into better management and improved outcome of patients in clinical practice.

BACKGROUND

Rapid diagnosis and effective treatment are required in large vessel vasculitis (LVV) in order to treat symptoms, but more importantly, to reduce the risk of complications such as blindness in giant cell arteritis (GCA) and aortic aneurysm or vascular stenosis in GCA and Takayasu arteritis (TAK). In April 2008, the first recommendations of the European League against Rheumatism (EULAR) for managing LVV were published.1 These recommendations have provided guidance to clinicians and researchers and have been widely cited. Since then, the results of several randomised clinical trials and cohort analyses have become available and the EULAR recommendations on imaging in LVV have been published recently.5

In light of these and other fundamental developments affecting key areas of management, the goal of the current project was to re-evaluate the literature in order to update the EULAR recommendations for the management of LVV.

METHODS

The recommendations were drafted according to the 2014 update of the EULAR standardised operating procedures (SOPs) for the development of EULAR-endorsed recommendations and the updated version of the Appraisal of Guidelines for Research & Evaluation (AGREE II) recommendations, where applicable (see online supplementary file 1 for a full description of methods).14 The task force consisted of 20 clinical experts (including rheumatologists, internists, immunologists, a neurologist, a neuro-ophthalmologist and an epidemiologist), from 11 European countries, India and China, two fellows (AA, SM), one health professional and two patients affected by the diseases under study.

Based on results of a Delphi survey among the task force, we defined eight key research questions addressing the management and treatment of LVV. As the original systematic literature review (SLR) for the 2008 recommendations dated back 10 years ago with different methodology, it was decided to conduct two completely new SLRs without time limits, focusing on general management and treatment, respectively (table 1).

The following databases were used: MEDLINE, EMBASE and Cochrane CENTRAL. Each article was assigned a level of evidence (LoE) according to the standards of the Oxford Centre for Evidence-Based Medicine and was systematically assessed for bias.3 The methods and results of the two SLRs are published separately.5,6

During a face-to-face meeting, task force members independently voted on each recommendation. Agreement on each recommendation and on the...
overarching principles on a scale of 0–10 (10 meaning full agreement) was given anonymously after the meeting by e-mail. A research agenda was formulated based on controversial issues and gaps in the evidence. The final manuscript was approved by the EULAR Executive Committee.

RESULTS

General aspects

The objective of the updated recommendations is to give advice on the management of LVV to rheumatologists and other health professions involved in the care of these patients. Because EULAR recommendations on imaging in LVV have been published recently, the task force agreed to refer to these recommendations removing topics regarding imaging from the update of the management recommendations.

To reduce confusion currently existing in the literature we propose new consensus definitions for disease activity states in LVV (table 2), based on the concept of activity states developed for the EULAR recommendations for small vessel vasculitides (SVV).7

The new definitions are consensus based and do not derive from the SLR. They differ in some details from definitions used in recent clinical trials (for comparison see online supplementary file 2). By analogy to the EULAR definitions for SVV, we suggest using the term ‘relapse’ consistently, but avoiding the term ‘flare’. We propose a distinction between major and minor relapses because the prognosis and treatment of relapses in LVV depends on the presence of ischaemia and/or development or progression of vascular damage. In contrast to SVV, true refractory disease in LVV is very rare because patients usually respond well to high dose glucocorticoids (GCs). However, in the past, the term ‘refractory’ was sometimes used for patients with LVV and GC-dependent disease that relapsed when GCs were tapered. We propose that the activity state ‘refractory’ should be used to reflect the difficulty in achieving disease control despite the patient remaining on an appropriate treatment schedule (which would include tapering of the GC dose).

In 2012, IgG4-related (peri-)aortitis and isolated aortitis, either primary or secondary to infection (eg, syphilis) or other systemic diseases were recognised as separate entities by the Chapel Hill consensus conference.8 The SLR revealed only very low evidence on management of these rare entities, which did not allow us to generate separate recommendations. Therefore, we encourage further research on these subtypes, as outlined in the research agenda below.

Overarching principles

The task force identified general principles that were deemed fundamental for the management of patients with LVV (table 3). These principles were consensus based and did not directly result from the SLR. The overarching principles and the specific recommendations are listed in table 3.

Recommendations

All patients presenting with signs and symptoms suggestive of GCA should be urgently referred to a specialist team for further multidisciplinary diagnostic work-up and management.

Untreated active GCA is an emergency and carries a substantial risk of permanent visual loss and other ischaemic complications. Therefore, we recommend that all patients ≥50 years of age presenting with acute or subacute onset of signs and symptoms suggestive of GCA (table 4) and raised inflammatory

Table 1

<table>
<thead>
<tr>
<th>SLR 1: General Management</th>
<th>SLR 2: Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Diagnosis: recognition, referral criteria, fast-track diagnosis, role of imaging for diagnosis, role of biopsy for diagnosis, interdisciplinary work-up, considerations for sub-types of disease such as cranial/ischaemic/large vessel, isolated aortitis, IgG4-related disease, LVV disease in other vasculitides.</td>
<td>▶ Drug therapy: dosing, length of therapy, outcome and treatment-related side effects for the following drugs: glucocorticoids, methotrexate and other non-biological immunosuppressive agents, tocilizumab and other biological agents.</td>
</tr>
<tr>
<td>▶ Prognostic and therapeutic implications of disease phenotypes: cranial vs extra-cranial, isolated aortitis, other forms including IgG-4 related disease, imaging, other biomarkers, comorbidities and complications, disease damage versus activity.</td>
<td>▶ Specific treatment of organ complications: loss of vision and stroke, relapsing, refractory, glucocorticoid-dependent disease.</td>
</tr>
<tr>
<td>▶ Long-term follow-up of patients: clinical assessments and frequency, imaging, patient-reported outcomes, physical therapies and management of complications.</td>
<td>▶ Revascularisation procedures: indications for referral, management of aneurysms and/or vessel stenosis.</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>EULAR consensus definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active disease</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Flare</td>
</tr>
<tr>
<td>Relapse</td>
</tr>
<tr>
<td>Major relapse</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Minor relapse</td>
</tr>
<tr>
<td>Refractory</td>
</tr>
<tr>
<td>Remission</td>
</tr>
<tr>
<td>Sustained remission</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glucocorticoid-free remission</td>
</tr>
</tbody>
</table>

*Some symptoms listed are typical only for GCA and may require further diagnostic work-up if present in other types of LVV. GC, glucocorticoid; GCA, giant cell arteritis; LVV, large vessel vasculitis.
visual impairment compared with historical cohorts with routine signs and symptoms of GCA can reduce the rate of permanent up, including imaging, within 24 hours after presenting with to a specialised centre ('fast-track clinic') for diagnostic work-up. Review by a neurologist is recommended.

visual disturbance. In case of signs of cerebral ischaemia, rapid artery biopsy (TAB) and should offer fast referral. Patients with GCA.

and therefore subject to bias, the available limited evidence 0 2019; doi:10.1136/annrheumdis-2019-215672. tive protein (CRP)/erythrocyte sedimentation rate (ESR) who
disease, have rapid access to up-to-date imaging2 and temporal

adjunctive therapy should be considered particularly after recurrent disease relapses&&. Initiation or modification of adjunctive therapy should be considered particularly after recurrent disease relapses8.

In case of major relapse (either with signs or symptoms of ischaemia or progressive vascular inflammation) we recommend reinstitution or dose escalation of GC therapy as recommended for new onset disease.## For minor reasons (eg, coronary heart disease or cerebrovascular disease etc). In special situations such as vascular ischaemic complications or high risk of cardiovascular disease, these might be considered on an individual basis.

Recommendations

1. All patients presenting with signs and symptoms suggestive of GCA should be urgently referred to a specialist team for further multidisciplinary diagnostic work-up and management.

2. All patients presenting with signs and symptoms suggestive of TAK should be referred to a specialist team for multidisciplinary diagnostic work-up and management.

3. A suspected diagnosis of LVV should be confirmed by imaging (ultrasound* or MRI§ for temporal or other cranial arteries, ultrasound, CT, PET-CT or MRI for the aorta/extracranial arteries§§) or histology (TAB§§).

4. High dose glucocorticoid (GC) therapy (40–60 mg/day prednisone-equivalent) should be initiated immediately for induction of remission in active GCA* or TAK*.

5. Adjunctive therapy should be used in selected patients with GCA (refractory or relapsing disease, the presence or an increased risk of GC related adverse effects or complications) using tocilizumab**. Methotrexate may be used as an alternative34.

6. Non-biologic disease modifying agents should be given in combination with GC in all patients with TAK*. Tocilizumab or TNF-inhibitors can be considered in case of relapsing or refractory disease despite conventional DMARD therapy34.

7. In case of major relapse (either with signs or symptoms of ischaemia or progressive vascular inflammation) we recommend reinstitution or dose escalation of GC therapy as recommended for new onset disease.## For minor relapses we recommend an increase in GC dose in at least to the last effective dose. * Initiation or modification of adjunctive therapy should be considered particularly after recurrent disease relapses8.

8. Antiplatelet or anticoagulant therapy should not be routinely used for treatment of LVV unless it is indicated for other reasons (eg, coronary heart disease or cerebrovascular disease etc). In special situations such as vascular ischaemic complications or high risk of cardiovascular disease, these might be considered on an individual basis.

9. In LVV, elective endovascular interventions or reconstructive surgery should be performed in phases of stable remission. However, arterial vessel dissection or critical vascular ischaemia requires urgent referral to a vascular team.

10. Regular follow-up and monitoring of disease activity in patients with LVV is recommended, primarily based on symptoms, clinical findings and ESR/CRP levels.

The LoE was determined for different parts of each recommendation (referred to with different signs such as * or §). The level of agreement was computed on a 0–10 scale. DMARD, disease modifying anti-rheumatic drug; FV, final vote (% of expert panel members that agreed to the recommendation); LVV, large vessel vasculitis; LoA, level of agreement; LoE, level of evidence; NA, not applicable; SoR, strength of recommendation; TAB, temporal artery biopsy; TAK, Takayasu arteritis; TNF, tumour necrosis factor.

Markers without explanation (eg, infection) should be referred urgently to a specialist team/experienced centre for further diagnostic work-up. This team or centre should have expertise in the disease, have rapid access to up-to-date imaging2 and temporal artery biopsy (TAB) and should offer fast referral. Patients with new onset of visual symptoms should be seen as soon as possible by an ophthalmological team to exclude other causes of sudden visual disturbance. In case of signs of cerebral ischaemia, rapid review by a neurologist is recommended.

Results from two retrospective cohort studies have shown that immediate treatment of GCA patients and rapid referral to a specialised centre (‘fast-track clinic’) for diagnostic work-up, including imaging, within 24 hours after presenting with signs and symptoms of GCA can reduce the rate of permanent visual impairment compared with historical cohorts with routine non-urgent referral.7 10 Although these studies were retrospective and therefore subject to bias, the available limited evidence supports rapid referral in order to confirm the diagnosis of GCA.11

Patients with both typical symptoms and increased C-reactive protein (CRP)/erythrocyte sedimentation rate (ESR) who present with acute visual disturbance should be treated before the appointment, as delaying GC therapy when visual loss is present is the strongest risk factor for permanent blindness.12

For patients without visual symptoms, there was no consensus among the task force members as to whether pre-emptive treatment with GCS should be started in all cases of suspected GCA in addition to fast referral to a specialised centre. In any case, pre-emptive therapy should only be given for a short period of time and should not delay early referral because the sensitivity of diagnostic tests decreases following treatment with GCs and to avoid unnecessary exposure to GCs of cases for whom the diagnosis of GCA is eventually not maintained. Although, the sensitivity of diagnostic tests decreases following treatment, imaging and biopsy may show features of GCA even weeks after GC therapy.13-16 Therefore, diagnostic tests to confirm a suspected diagnosis of GCA should be performed in all patients irrespective of the duration of pre-emptive therapy.

All patients presenting with signs and symptoms suggestive of TAK should be referred to a specialist team for multidisciplinary diagnostic work-up and management.

The majority of symptoms of TAK (table 4) are non-specific, but should prompt a thorough examination of the arterial tree.

Because there is no gold standard for the diagnosis of TAK,
we recommend referral to an experienced centre for further work-up including large-vessel imaging. Studies on fast-track referral are lacking for patients with TAK. Patients with individual presentations suggesting an increased risk of ischaemic complications need a more urgent referral.

A suspected diagnosis of LVV should be confirmed by imaging (ultrasound or MRI for temporal or other cranial arteries, ultrasound, CT, positron-emission-tomography (PET)-CT or MRI for the aorta/ extracranial arteries) or histology (TAB)

Every effort should be made to confirm a suspected diagnosis of LVV. In rare cases, both imaging and biopsy are negative. If the clinical probability in such cases is high, a provisional diagnosis of GCA may be made, which needs to be confirmed or revised during follow-up.

The original recommendations advised TAB in every case of suspected GCA. Since then, a large amount of good-quality data demonstrated that imaging and biopsy have similar diagnostic value if assessors are proficient in these techniques. The recently published EULAR recommendations for the use of imaging in LVV in clinical practice contain comprehensive advice regarding when and how the different imaging modalities should be used in different subsets of LVV. Several studies have shown that neither imaging nor TAB are 100% sensitive. Imaging of the temporal arteries by ultrasound or MRI identifies only 77% and 73% of cases, respectively, with clinical diagnosis as reference standard for GCA. Thus, performing a second test can be considered if the first was negative but the clinical suspicion of GCA persists.

Ultrasound guidance appears not to improve the diagnostic yield of TAB. Biopsies should be at least 1 cm in length, which corresponds to a postfixation length of at least 0.7 cm. Biopsy of the contralateral artery does not add significantly to the diagnostic yield and is therefore not routinely recommended. Overall, available data do not provide convincing evidence that any individual characteristics of the biopsy findings (eg, composition or intensity of the inflammatory infiltrate) are sufficiently predictive for subsequent clinical events to allow guidance of treatment decisions or follow-up in clinical practice.

ESR and CRP are typically elevated in GCA, and it is highly infrequent (<3%) that both are normal. While several other serological biomarkers have been evaluated, none is sufficiently sensitive and specific for detection and assessment of disease activity or prediction of prognosis to recommend its use in clinical practice.

In patients with atypical clinical presentations not compatible with current disease definitions, an alternative diagnosis or overlapping associated diseases should be considered, in the diagnostic work up, such as for example aortitis related to IgG4–related disease, LVV in anti-neutrophil-cytoplasm (ANCA)–associated vasculitis (AAV) or other vasculitides (eg, Behçet’s syndrome), or LVV secondary to spondyloarthropathies, relapsing polychondritis or infections.

High dose GC therapy (40–60 mg/day prednisone-equivalent) should be initiated immediately for induction of remission in active GCA or TAK. Once disease is controlled, we recommend tapering the GC dose to a target dose of 15–20 mg/day within 2–3 months and after 1 year to ≤5 mg/day (for GCA) and to ≤10 mg/day (for TAK)

Induction treatment with a starting GC dose of 40–60 mg per day (all GC doses discussed in this article are prednisolone equivalent) leads to remission in the majority of patients with LVV. Although the maximum genomic effect of GCs is around 100 mg of prednisone-equivalent, there is no clear evidence that starting doses of above 60 mg per day are more effective than 60 mg per day in the prevention of ischaemic events or other relevant endpoints. It should be noted that the genomic effects of glucocorticoids depend on certain patient-specific pharmacokinetic and pharmacodynamic factors. These include for example total cell number (indirectly quantified by weight), numbers of glucocorticoid receptors per cell, and glucocorticoid receptor binding affinity. The relatively high variability of these factors explains why neither the dose-dependent efficacy of a glucocorticoid therapy can be predicted absolutely correctly, nor a weight-adapted therapy with glucocorticoids is recommended. As a consequence, and since differences between certain dosages or weight-tested glucocorticoid dosages have not been rigorously tested in clinical trials, the current recommendations provide dose ranges.

In patients with GCA with acute visual loss or amaurosis fugax, the administration of 0.25–1 g intravenous methylprednisolone for up to 3 days should be considered, because these high doses have both genomic and rapid non-genomic effects. However, there are only low-quality retrospective clinical data supporting this recommendation. Referral for intravenous GC therapy should not delay treatment with oral GC. The SLR revealed quality issues in both randomised controlled clinical trials (RCTs) of high dose pulse intravenous GC therapy in patients with visual symptoms. In view of the limited quality of evidence, the task force recommends limiting the use of intravenous pulse GC therapy to patients with complicated GCA such as those with GCA-related visual symptoms.

We recommend tapering the GC dose, once remission has been achieved. A GC taper regimen must weigh the risk of relapse against the risk of GC-related adverse events. In GCA, relapses
Figure 1 The 2018 EULAR algorithm for pharmacological treatment of giant cell arteritis (GCA). GC, glucocorticoids. A clinical diagnosis of GCA should be confirmed by either imaging or biopsy; acute loss of vision, amaurosis fugax; or 5–15 mg/day above the last effective dose; the treatment target is sustained remission (absence of clinical signs and symptoms of active GCA + normal acute phase reactants) plus ability to taper GCs to the specified target without relapse; see table 2 for definitions; recommended dose is 162 mg; minimum recommended dose is 15 mg to be decided on an individual basis (lack of evidence); in patients with GCA-related visual symptoms a starting dose of 60 mg prednisone per day after GC administration.

Adjunctive therapy should be used in selected patients with GCA (refractory or relapsing disease, the presence or an increased risk of GC related adverse effects or complications) using TCZ. Methotrexate may be used as an alternative

Recommendation

For TAK, there are no studies comparing different GC taper protocols. Clinical experience suggests that a starting dose of 40–60 mg per day is appropriate for the majority of patients, while patients with more localised disease may respond to lower initial GC doses of 25–30 mg per day. In a recent small RCT of TCZ in TAK, a taper of GC in the placebo group by 10% per week after week four resulted in a high relapse rate (around 80% during weeks 8–16). A similar relapse rate in TAK patients treated with GC monotherapy was observed in a recent RCT of abatacept. We therefore recommend that in patients who have reached a GC dose of 15–20 mg/day after 2–3 months, GC doses should subsequently be reduced more slowly as compared with GCA, targeting a dose of ≤10 mg/day after 1 year (figure 2).

Adjunctive therapy should be used in selected patients with GCA (refractory or relapsing disease, the presence or an increased risk of GC related adverse effects or complications) using TCZ. Methotrexate may be used as an alternative

The original recommendations suggested adjunctive immunosuppressive therapy in all patients with LVV. However, although the risk of relapse in GCA is high, a substantial number of patients with GCA treated with GC monotherapy do not relapse and are able to taper the GC dose according to a target of ≤5 mg/day after 1 year, a dose which the EULAR task force considered to be acceptably safe. Therefore, we recommend limiting the use of adjunctive therapy to patients who have already developed, or have either an increased risk of developing GC-related side effects or complications, such as osteoporosis, diabetes, cardiovascular disease or glaucoma, or for relapsing patients irrespective of other risk factors. Given the high prevalence of comorbidities in the elderly population affected by GCA, the decision to use adjunctive immunosuppressive therapy in the individual patient should be balanced against potential risks for treatment-related complications, such as the increased risk of lower intestinal perforations reported in patients with rheumatoid arthritis receiving TCZ.

For TAK, there are no studies comparing different GC taper protocols. Clinical experience suggests that a starting dose of 40–60 mg per day is appropriate for the majority of patients, while patients with more localised disease may respond to lower initial GC doses of 25–30 mg per day. In a recent small RCT of TCZ in TAK, a taper of GC in the placebo group by 10% per week after week four resulted in a high relapse rate (around 80% during weeks 8–16). A similar relapse rate in TAK patients treated with GC monotherapy was observed in a recent RCT of abatacept. We therefore recommend that in patients who have reached a GC dose of 15–20 mg/day after 2–3 months, GC doses should subsequently be reduced more slowly as compared with GCA, targeting a dose of ≤10 mg/day after 1 year (figure 2).
Two high-quality randomised controlled clinical trials in patients with GCA have shown that adjunct administration of TCZ reduces the risk of relapse and cumulative GC exposure compared with GC monotherapy.\(^6\)\(^7\)\(^8\)\(^9\) Because TCZ suppresses CRP synthesis in the liver, the presence of a normal CRP or ESR may be falsely reassuring, although sensitivity analyses in the GiACTA trial suggest that this problem did not affect the primary outcome.\(^3\)\(^8\)\(^9\) However, with the limited reliability of acute phase reactants for activity assessment in patients receiving TCZ, follow-up is largely symptom-based, which can make monitoring disease activity difficult. Thus, further studies on the role of imaging and other biomarkers for disease monitoring are needed. As high-quality long-term data are missing, it is not known if TCZ can reduce the risk of aneurysms or vascular stenosis. Hypothetically, the development of vascular long-term damage may occur despite TCZ therapy.\(^7\)

Of three RCTs on the use of methotrexate (MTX) in newly diagnosed GCA,\(^7\)\(^2\)\(^-\)\(^4\) only one\(^2\)\(^4\) met its primary endpoint. As outlined in our SLR analysis in more detail, all of these trials were conducted more than 20 years ago, had differences in the study design and sample size which could have all accounted for the divergent outcomes. Importantly, the maximum weekly MTX doses of 7.5, 10 and 15 mg p.o. used in all three studies were lower than those used in clinical practice today. Despite methodological limitations of the individual studies, a high quality meta-analysis using pooled individual patient data from these trials demonstrated a reduced risk of first relapse (HR 0.65, 95% CI 0.44 to 0.98, p=0.04) and second relapse (HR 0.49, 95% CI 0.27 to 0.89, p=0.02), a higher probability of GC-free remission for ≥24 weeks (HR 2.84, 95% CI 1.52 to 5.28, p<0.001) and a lower cumulative GC dose of –842 mg at week 48 in patients treated with MTX versus controls.\(^7\) Of note, adverse events and early withdrawals were not different between MTX and placebo groups in the metaanalysis.\(^7\)

There are no trials comparing TCZ and MTX in GCA and the differing study designs preclude strong conclusions about the potential superiority of one agent over the other. However, compared with MTX, the effect size of TCZ in terms of relapse risk reduction and GC sparing seems larger and the meta-analysis on MTX revealed heterogeneity of results between the individual studies. Therefore, TCZ provides a higher confidence in achieving a clinically relevant treatment effect as compared with MTX. Further studies are needed to define the optimal length of treatment, GC taper regimens, cost effectiveness and monitoring. At present, there are few and only low-quality data on long-term treatment with MTX or TCZ in GCA.\(^6\)\(^7\) Therefore, the duration of treatment and potential dose reductions must be decided on an individual basis. As current evidence does not suggest an excessive risk of treatment-related complications of TCZ or MTX as compared with other indications,\(^3\)\(^8\)\(^7\) patients should be monitored for treatment-related side effects according to existing guidelines for other diseases.\(^7\)

Data for other adjunctive therapies are either sparse (abatacept), derived from low-quality studies (ustekinumab, adalimumab, tocilizumab, leflunomide, cyclophosphamide, dapsone, etanercept) or negative (adalimumab, infliximab, cyclosporine).\(^7\)\(^9\)\(^-\)\(^9\)\(^0\)

Non-biological disease modifying agents should be given in combination with GC in all patients with TAK. TCZ or tumour necrosis factor-inhibitors can be considered in case of relapsing or refractory disease despite conventional disease modifying anti-rheumatic drug therapy

In view of the high relapse rates of up to 70%, the development of new vascular lesions and the inability of many patients to achieve low GC doses,\(^9\)\(^1\)\(^2\)\(^3\)\(^4\) we advise that early administration of a GC-sparing agent in TAK is justified and reflects current treatment practice in more recent cohorts.\(^9\)\(^3\)\(^4\) However, we acknowledge that the LoE supporting this recommendations is low.

Only two RCTs, both on biological agents, have been published, neither of which met its primary endpoint for efficacy.\(^6\)\(^7\) The evidence for a use of TCZ in TAK comes largely from one small RCT showing a statistically borderline signal (p=0.0596) towards reduced HR for the time to the first relapse and similar non-significant improvement in some secondary endpoints in the TCZ-treated patients.\(^6\) Additional
experience with TCZ treatment in TAK was reported from one prospective and four retrospective case series including a total of 89 patients of which the majority had refractory or relapsing disease despite treatment with GC or other agents. Efficacy of tumour necrosis factor (TNF)-inhibitors in TAK has been reported in one prospective and several retrospective open-label uncontrolled studies/case series. Overall, the reported reductions in disease activity in all these case series need to be interpreted with caution, because disease activity in TAK may decrease as a result of continued GC therapy over time. In contrast to the positive trends observed in GCA, the RCT of abatacept did not show any signs of efficacy in TAK. Lower quality evidence from uncontrolled prospective and retrospective case series exists for the use of conventional immunosuppressive agents such as MTX, leflunomide, mycophenolate mofetil, azathioprine and cyclophosphamide in TAK. Since TAK targets primarily women with childhood-potential and is a chronic and usually not acutely life threatening disease (unlike AAV), the use of cyclophosphamide should be limited to patients where other treatments have failed or are not tolerated. There is no high-quality evidence showing superiority of biologicals over conventional disease modifying anti-rheumatic drugs (DMARDs) in TAK.

Despite this overall low LoE, we recommend considering adjunctive treatment with conventional immunosuppressive drugs at diagnosis of TAK. A TNF-inhibitor or TCZ can be used as second line agents in case of relapsing disease. The choice of a specific immunosuppressive agent should be based on patient comorbidities or contraindications. GCs should be tapered to the lowest possible dose during treatment with immunosuppressive agents. Because good-quality data on long-term treatment of TAK are lacking, the duration of treatment must be decided on an individual basis. One study indicated that relapse risk is particularly high during the first 5 years following diagnosis.

In case of major relapse (either with signs or symptoms of ischaemia or progressive vascular inflammation) we recommend reinstitution or dose escalation of GC therapy as recommended for new onset disease. For minor relapses we recommend an increase in GC dose to at least the last effective dose. Initiation or modification of adjunctive therapy should be considered particularly after recurrent disease relapses.

There are no studies specifically addressing the treatment of relapse in LVV. Even larger cohort studies on relapses in GCA often lack detailed information on treatment of the relapse (GC dose, tapering, initiation of adjunctive treatment, etc.). Protocols for relapse treatment differ among RCTs and the heterogeneous study designs and adjunctive therapies do not allow for robust conclusions regarding which of the different strategies is the best.

Major relapses impose the risk of subsequent organ damage due to ischaemia and/or progressive vascular inflammation (eg, progressive large vessel stenosis) and should therefore be treated like new-onset disease with high dose GC (initial dose 40–60 mg/day) as outlined above (recommendations 3 and 4). In case of a minor relapse (eg, recurring isolated polymyalgia rheumatica (PMR) symptoms), we recommend an increase of the daily GCs dose either to the last effective dose or to 5–15 mg above this dose, the latter being common practice in many centres.

Disease relapses in LVV are most commonly but not always accompanied by an increase of ESR and CRP. In the absence of symptoms of LVV, a rise of ESR or CRP should not automatically prompt an immediate escalation of immunosuppressive therapy. Infections should be ruled out first. If repeated measurements confirm a substantial elevation of ESR and CRP and if there is no evidence for another cause of the inflammatory response, large vessel imaging should be considered. In the presence of less specific symptoms (eg, diffuse headache) in patients with normal inflammatory markers, the use of ultrasound for guiding temporal artery biopsy may be considered.
imaging (ultrasound, MRI or PET-CT) may be helpful. However, signals of vessel wall inflammation on imaging may persist even in complete clinical remission. At present, it is unknown if such residual activity represents true active disease or remodelling. Therefore, such imaging findings observed during follow-up have to be interpreted with caution considering the disease course of the individual patient and by comparing them to imaging findings previously obtained.

As outlined in recommendation 5, we recommend adjunctive GC sparing therapy (if not already begun at disease onset) or a modification (dose escalation or switch to another agent) of an already existing GC-sparing therapy in relapsing patients in order to improve long-term disease control. So far, there are no RCTs that have specifically focused on the adjunctive treatment of relapses. However, the GiACTA trial included 132 relapsing patients and TCZ was superior to GC monotherapy in this situation. All three RCTs of MTX in GCA included patients with new onset disease only. However, patients who received MTX had a 50% lower risk (p=0.02) of developing a second relapse in a meta-analysis, thus providing evidence for the efficacy of MTX after a first relapse. Other agents have either not been studied prospectively or showed no signs of efficacy in relapsing GCA.

In relapsing TAK despite treatment with GC plus a conventional immunosuppressive agent, a TNF-inhibitor or TCZ can be used as second line agent (see also recommendation 6). Antiplatelet or anticoagulant therapy should not be routinely used for treatment of LVV unless it is indicated for other reasons (eg, coronary heart disease, cerebrovascular disease, etc). In special situations such as vascular ischaemic complications or high risk of cardiovascular disease, these might be considered on an individual basis.

Patients with GCA are at an increased risk of developing cardiovascular and cerebrovascular events. The original EULAR recommendation to use aspirin prophylactically in GCA was based on data from two retrospective studies showing that patients who received low-dose aspirin before or at the time of diagnosis of GCA may have reduced rates of vision loss or stroke, although the number of events was low in these cohorts. However, two more recent cohort studies and a meta-analysis did not confirm a protective effect of aspirin in GCA. Balancing the potential protective effect (which is unknown) of aspirin against its potential harm (such as bleeding), we decided to change the original statement and now recommend that antiplatelet or anticoagulant therapy should not be routinely prescribed unless they are indicated for other reasons (eg, coronary heart disease, cerebrovascular disease, etc).

A significantly decreased risk of ischaemic events was reported from a single cohort of 41 TAK patients using antiplatelet therapy. In view of the low LoE, a vascular team should decide on the use of anti-platelet therapy in TAK on an individual basis taking the degree of vessel stenosis and other risk factors into account.

In LVV, elective endovascular interventions or reconstructive surgery should be performed during stable remission. However, arterial vessel dissection or critical vascular ischaemia requires urgent referral to a vascular team.

Interventional or surgical therapy is indicated if a vascular lesion that persists despite medical therapy is either symptomatic (such as peripheral artery limb stenosis causing claudication) or is associated with an increased risk of future complications (such as rapid progression of an aortic aneurysm). The method of choice for vascular interventions in patients with LVV depends on the anatomic location of the vascular damage, timing (elective vs emergency) and other factors.

Undertaking surgical interventions in patients with active disease is associated with an increased risk of complications and lower patency rates. Procedures should preferably be performed only during stable control of inflammation, except for emergency indications such as critical ischaemia, neurological complications such as stroke or aneurysm dissection. Otherwise, interventional and surgical vascular therapy follows the same principles as in patients without vasculitis. Given the complexity of LVV, patients selected for interventional or surgical therapy should be managed in collaboration with a multidisciplinary team (the exact constituency will vary, but could include vascular radiologists, vascular surgeons, neurologists and rheumatologists).

Regular follow-up and monitoring of disease activity is recommended in patients with LVV, primarily based on symptoms, clinical findings and ESR/CRP levels.

There are no data available to guide long-term follow-up of patients with GCA or TAK. In view of the high frequency of relapses and the potential harm resulting from relapse-related vessel and organ damage, routine follow-up visits could be scheduled every 1–3 months during the first year and in 3–6 months intervals afterwards. In patients with relapse-free remission, annual follow-up under shared care between rheumatologists and primary care can be considered. As late relapses can occur and the incidence of structural vascular lesions in GCA increases after 5 years from diagnosis, long-term follow-up of patients with GCA that remain asymptomatic can be scheduled on an individual patient basis.

Visits should include clinical monitoring and measurement of ESR and CRP. Routine imaging for activity assessment is not recommended for patients in clinical and biochemical remission, but may be used for long-term monitoring of structural damage, particularly vessel stenosis, dilatation and/or aneurysms. Methods and frequency of imaging should be decided on an individual basis. LVV-specific patient-reported outcome instruments for use in clinical practice are not available and should be the subject of future research.

DISCUSSION

Since the first EULAR recommendations on the management of LVV were published, high-quality diagnostic studies and several RCTs have expanded our knowledge about these complex diseases and allowed a significant update of the original recommendations. In view of new research questions to be addressed, improvements in SOPs and methodology for the development of EULAR recommendations, we undertook two completely new SLRs without time limits. Therefore, this update represents a new set of recommendations rather than a simple revision. While the majority of the original recommendations addressed LVV in general, new data allowed us to offer separate recommendations for GCA and TAK at least for some key areas of management. In GCA, disease subsets with only cranial, only extracranial or cranial plus extracranial arteritis have been described. High-quality evidence to guide differential management of these subtypes is yet lacking. Therefore,
all recommendations on GCA management inhere refer to all subtypes of GCA.

For this update, we have made substantial alterations, including the introduction of overarching principles and new recommendations on early diagnosis, multidisciplinary management and relapse treatment.

In conclusion, we substantially revised the original recommendations for the management of LVV. Despite progress over the past 10 years, we acknowledge that many recommendations are still consensus-based. However, despite the low-LoE, the level of agreement for each recommendation was consistently high among the task force members. We encourage clinicians to implement these recommendations into their clinical practice in order to effectively manage LVV and to improve the patients’ quality of care.

Author affiliations

1Department of Internal Medicine, Rheumatology and Immunology, Medius Kliniken, University of Tübingen, Kirchheim-Teck, Germany
2Rheumatology Department, Centro Hospitalar do Baixo Vouga E.P.E, Aveiro, Portugal
3Rheumatology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
4Department of Rheumatology and Immunology, University Hospital Charité, Berlin, Germany
5Internal Medicine, Centre Hospitalier Universitaire de Caen, Caen, Basse-Normandie, France
6Rheumatology and Clinical Immunology, UMCG, Groningen, The Netherlands
7Leicester, UK
8Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
9Rheumatology, Southend Hospital NHS Trust, Westcliff-on-sea, UK
10Rheumatology, Medical University Graz, Graz, Austria
11Rheumatology, Hospital of Bruneck, Bruneck, Italy
12Division of Rheumatology, Department of Internal Medicine, Istanbul University Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
13Department of Internal Medicine, Rheumatology and Immunology, Medus Kliniken, Karl-Albrechts-Universität Tübingen, Kirchheim-Teck, Germany
14Hospital Saint-Louis, University Paris Diderot, Paris, France
15Ophthalmology, University Hospitals Birmingham, Birmingham, UK
16Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
17Rheumatology, Norfolk and Norwich University Hospital, Norwich, UK
18Rheumatology, Hospital de Santa Maria - CHLN, Lisbon Academic Medical Centre, Lisbon, Portugal
19Rheumatology Research Unit; Instituto de Medicina Molecular, Instituto de Medicina Molecular, Lisboa, Portugal
20Medical University Graz, Graz, Austria
21Stroke and Neurocritical Care, GLB Hospitals and Acute Stroke Centers, Chennai, India
22Rheumatology, Peking Union Medical College Hospital, Beijing, China
23University of Iceland, Reykjavik, Iceland
24Department of Rheumatology, Skåne University Hospital, Malmö, Sweden
25Medical Centre for Rheumatology Berlin-Buch, Immanuel Krankenhaus Berlin, Berlin, Germany
26Rheumatology and Clinical Immunology / Allerg, University Hospital (Inselspital), Bern, Switzerland
27Norwich Medical School, Bob Champion Research and Education Building, University of East Anglia, Norwich, UK
28Steyning, UK
29Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science (NDORMS), University of Oxford, Oxford, UK

Correction notice This article has been corrected since it published Online First. The third affiliations has been updated and the author Maria Cintia Cid changed to Maria C Cid.

Acknowledgements The authors wish to thank the librarians Chiara Rebucci, Office and Scientific Documentation centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy and Helena Donato, Documentation Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal, for advice and assistance during the SLR.

Contributors AA and SM conducted the SLR. RL provided substantial methodological advice. BH drafted the first version of the manuscript and subsequent revisions. All authors were involved in the formulation and discussion of the recommendations, reviewed the manuscript and made extensive comments and changes to it. The final version of the manuscript was approved by all authors.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests EB received consultancies from Roche (payed to the University Medical Center Groningen). FB received grants from Horizon and Mundipharma and speaker fees and/or consultancies from Horizon, Mundipharma, Roche and Sanofi. HB received a grant and speaker fees from Roche. BD received consultancies and/or speaker fees from BMS, Chugai, GSK and Roche. CD received and grant from Celgene and speaker fees and/or consultancies from AbbVie, BMS, Lilly, MSD, Pfizer, Novartis, UCB, Roche and Sanofi. CH received speaker fees and/or consultancies from AbbVie, Boehringer, Chugai, Celgene, MSD, Pfizer, Novartis and Roche. SM received speaker fees and consultancies from Roche and Chugai. WS received a grant from Roche and speaker fees and consultancies from Chugai, GSG, Novartis, Roche and Sanofi. CT received a grant from BMS and speaker fees and/or consultancies from AbbVie, BMS, Pfizer and Roche. PV received a grant for conducting an RCT in GCA from Roche. All other authors have no competing interests.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

Recommendation

Recommendation

