Supplement

Prediction of Improvement in Skin Fibrosis in Diffuse Cutaneous Systemic Sclerosis – a EUSTAR Analysis

Rucsandra Dobrota^{1,2}, Britta Maurer¹, Nicole Graf³, Carina Mihai², Suzana Jordan¹, Otylia Kowal-Bielecka⁴, Yannick Allanore⁵, Oliver Distler¹ on behalf of EUSTAR co-authors

Collaborators of the EUSTAR centres (numerical order of centers)

Marco Matucci Cerinic⁶, Serena Guiducci⁶, Ulrich Walker⁷, Giovanni Lapadula⁸, Florenzo Iannone⁸, Radim Becvar⁹, Stanislaw Sierakowsky⁴, Maurizio Cutolo¹⁰, Alberto Sulli¹⁰, Gabriele Valentini¹¹, Giovanna Cuomo¹¹, Serena Vettori¹¹, Gabriela Riemekasten¹², Elise Siegert¹³, Simona Rednic¹⁴, Ileana Nicoara¹⁴, André Kahan⁵, P. Vlachoyiannopoulos¹⁵, C. Montecucco¹⁶, Roberto Caporali¹⁶, Patricia E. Carreira¹⁷, Srdan Novak¹⁸, László Czirják¹⁹, Cecilia Varju¹⁹, Carlo Chizzolini²⁰, Eugene J. Kucharz²¹, Anna Kotulska²¹, Magdalena Kopec-Medrek²¹, Malgorzata Widuchowska²¹, Franco Cozzi²², Blaz Rozman²³, Carmel Mallia²⁴, Bernard Coleiro²⁴, Armando Gabrielli²⁵, Dominique Farge²⁶, Chen Wu²⁶, Zora Marjanovic²⁶, Helene Faivre²⁶, Darin Hij²⁶, Roza Dhamadi²⁶, Paolo Airo²⁷, Roger Hesselstrand²⁸, Frank Wollheim²⁸, Dirk M Wuttge²⁸, Kristofer Andréasson²⁸, Duska Martinovic²⁹, Alexandra Balbir-Gurman³⁰, Yolanda Braun-Moscovici³⁰, F. Trotta³¹, Andrea Lo Monaco³¹, Nicolas Hunzelmann³², Raffaele Pellerito³³, Lisa Maria Bambara³⁴, Paola Caramaschi³⁴, Carol Black³⁵, Christopher Denton³⁵, Nemanja Damjanov³⁶, Jörg Henes³⁷, Vera Ortiz Santamaria³⁸, Stefan Heitmann³⁹, Dorota Krasowska⁴⁰, Matthias Seidel⁴¹, Harald Burkhardt⁴², Andrea Himsel⁴², Maria J. Salvador⁴³, José Antonio Pereira Da Silva⁴³, Bojana Stamenkovic⁴⁴, Aleksandra Stankovic⁴⁴, Mohammed Tikly⁴⁵, Lidia P. Ananieva⁴⁶, Lev N. Denisov⁴⁶, Ulf Müller-Ladner⁴⁷, Marc Frerix⁴⁷, Ingo Tarner⁴⁷, Raffaella Scorza⁴⁸, Merete Engelhart⁴⁹, Gitte Strauss⁴⁹, Henrik Nielsen⁴⁹, Kirsten Damgaard⁴⁹, Antonio Zea Mendoza⁵⁰, Carlos de la Puente⁵⁰, Walter A. Sifuentes Giraldo⁵⁰, Øyvind Midtvedt⁵¹, Silje Reiseter⁵¹, Eric Hachulla⁵², David Launay⁵², Guido Valesini⁵³, Valeria Riccieri⁵³, Ruxandra Maria Ionescu⁵⁴, Daniela Opris⁵⁴, Laura Groseanu⁵⁴, Roxana Sfrent Cornateanu², Razvan Ionitescu², Ana Maria Gherghe², Alina Soare², Marilena Gorga², Mihai Bojinca², Georg Schett⁵⁵, Jörg HW Distler⁵⁵, Christian Beyer⁵⁵, Pierluigi Meroni⁵⁶, Francesca Ingegnoli⁵⁶, Luc Mouthon⁵⁷, Filip De Keyser⁵⁸, Vanessa Smith⁵⁸, Francesco P. Cantatore⁵⁹, Ada Corrado⁵⁹, Maria R. Pozzi⁶⁰, Kilian Eyerich⁶¹, Rüdiger Hein⁶¹, Elisabeth Knott⁶¹, Piotr Wiland⁶², Magdalena Szmyrka-Kaczmarek⁶², Renata Sokolik⁶², Ewa Morgiel⁶², Marta Madej⁶², Brigitte Krummel-Lorenz⁶³, Petra Saar⁶³, Martin Aringer⁶⁴, Claudia Günther⁶⁴, Rene Westhovens⁶⁵, Ellen de Langhe⁶⁵, Jan Lenaerts⁶⁵, Branimir Anic⁶⁶, Marko Baresic⁶⁶, Miroslav Mayer⁶⁶, Sebastião C. Radominski⁶⁷, Carolina de Souza Müller⁶⁷, Valderílio F. Azevedo⁶⁷, Svetlana Agachi⁶⁸, Liliana Groppa⁶⁸, Lealea Chiaburu⁶⁸, Eugen Russu⁶⁸, Sergei Popa⁶⁸, Thierry Zenone⁶⁹, Simon Stebbings⁷⁰, John Highton⁷⁰, Lisa Stamp⁷¹, Peter Chapman⁷¹, John O'Donnell⁷¹, Kamal Solanki⁷², Alan Doube⁷², Douglas Veale⁷³, Marie O'Rourke⁷³, Esthela Loyo⁷⁴, Mengtao Li⁷⁵, Edoardo Rosato⁷⁶, Antonio Amoroso⁷⁶, Antonietta Gigante⁷⁶, Cristina-Mihaela Tanaseanu⁷⁷, Monica Popescu⁷⁷, Alina Dumitrascu⁷⁷, Isabela Tiglea⁷⁷, Rosario Foti⁷⁸, Rodica Chirieac⁷⁹, Codrina Ancuta⁷⁹, Peter Villiger⁸⁰, Sabine Adler⁸⁰, Paloma García de la Peña Lefebvre⁸¹, Silvia Rodriguez Rubio⁸¹, Marta Valero Exposito⁸¹, Jean Sibilia⁸², Emmanuel Chatelus⁸², Jacques Eric Gottenberg⁸², Hélène Chifflot⁸², Ira Litinsky⁸³, Algirdas Venalis⁸⁴, Irena Butrimiene⁸⁴, Paulius Venalis⁸⁴, Rita Rugiene⁸⁴, Diana Karpec⁸⁴, Lesley Ann Saketkoo⁸⁵, Joseph A. Lasky⁸⁵, Eduardo Kerzberg⁸⁶, Fabiana Montoya⁸⁶, Vanesa Cosentino⁸⁶, Massimiliano Limonta⁸⁷, Antonio Luca Brucato⁸⁷, Elide Lupi⁸⁷, François Spertini⁸⁸, Camillo Ribi⁸⁸, Guillaume Buss⁸⁸, Jean Louis Pasquali⁸⁹, Thierry Martin⁸⁹, Audrey Gorse⁸⁹

¹Division of Rheumatology, University Hospital Zurich, Zurich, Switzerland

²Department of Internal Medicine and Rheumatology, Cantacuzino Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania

³graf biostatistics, Winterthur, Switzerland

⁴Department of Rheumatology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland

⁵Department of Rheumatology, University Paris Descartes and Cochin Hospital, Paris, France

⁶Department of Medicine, Section of Rheumatology, University of Florence, Italy

⁷Department of Rheumatology, University Hospital Basel, Switzerland

⁸Rheumatology Unit-DiMIMP, School of Medicine University of Bari, Italy

⁹Institute of Rheumatology, 1st Medical School, Charles University, Prague, Czech Republic

¹⁰Research Laboratory and Division of Rheumatology, Department of Internal

Medicine, University of Genova, Italy

¹¹Department of Clinical and Experimental Medicine "F-Magrassi" II Policlinico, Unit of Rheumatology, Naples, Italy

¹²Department of Rheumatology, University of Lübeck, Germany

¹³Department of Rheumatology, Charitè University Hospital, Berlin, German Rheumatism Research Centre Berlin (DRFZ), a Leibniz institute, Germany

¹⁴Department of Rheumatology, University of Medicine & Pharmacy "Iuliu Hatieganu"

Cluj, Cluj-Napoca, Romania

¹⁵Department of Pathopysiology, Medical School, National University of Athens,

Greece

¹⁶Unita' Operativa e Cattedra di Reumatologia, IRCCS Policlinico S Matteo, Pavia,

Italy

¹⁷Division of Rheumatology, Hospital 12 de Octubre, Madrid, Spain

¹⁸Department of Rheumatology and Clinical Immunology, Internal Medicine, KBC

Rijeka, Croatia

¹⁹Depatment of Immunology and Rheumatology, Faculty of Medicine, University of Pécs, Hungary

²⁰Department of Immunology and Allergy, University Hospital, Geneva, Switzerland

²¹Department of Internal Medicine and Rheumatology, Medical University of Silesia,Katowice, Poland

²²Rheumatology Unit, Department of Clinical and Experimental Medicine, Universityof Padova, Italy

²³University Medical Center Ljublijana, Division of Internal Medicine, Department of

Rheumatology, Ljubliana, Slovenia

²⁴"Stella Maris", Balzan, Malta

²⁵Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy

²⁶Department of Internal Medicine, Hospital Saint-Louis, Paris, France

²⁷Spedali Civili di Brescia, Servizio di Reumatologia Allergologia e Immunologia

Clinica, Brescia, Italy

²⁸Department of Rheumatology, Lund University, Lund, Sweden

²⁹Department of Internal Medicine, Clinical Hospital of Split, Croatia

³⁰B. Shine Rheumatology Unit, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion, Haifa, Israel

³¹Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Ferrara, Italy

³²Department of Dermatology, University Hospital Cologne, Germany

³³Ospedale Mauriziano, Centro di Reumatologia, Torino, Italy

³⁴Unità di Reumatologia, AOUI, Verona, Italy

³⁵Centre for Rheumatology, Royal Free and University College London Medical School, Royal Free Campus, United Kingdom

³⁶Institute of Rheumatology, Belgrade, Serbia & Montenegro

³⁷Medizinische Universitätsklinik, Abt. II (Onkologie, Hämatologie, Rheumatologie, Immunologie, Pulmonologie), Tübingen, Germany

³⁸Rheumatology Granollers General Hospital, Barcelona, Spain

³⁹Department of Rheumatology, Marienhospital Stuttgart, Germany

⁴⁰Department of Dermatology, Medical University of Lublin, Poland

⁴¹Medizinische Universitäts-Poliklinik, Department of Rheumatology, Bonn, Germany

⁴²Klinikum der Johann Wolfgang Goethe Universität, Medizinische Klinik III,

Rheumatologische Ambulanz, Frankfurt am Main, Germany

⁴³Rheumatology Department, Hospitais da Universidade, Coimbra, Portugal

⁴⁴Institute for Prevention, Treatment and Rehabilitation of Rheumatic and

Cardiovascular Diseases, Niska Banja, Serbia and Montenegro

⁴⁵Rheumatology Unit, Department of Medicine Chris Hani Haragwanath, Hospital and

University of the Witwatersrand, Johannesburg, South Africa

⁴⁶Institute of Rheumatology, Russian Academy of Medical Science, Moscow, Russia

⁴⁷Justus-Liebig University Giessen, Department of Rheumatology and Clinical

Immunology, Kerckhoff-Klinik Bad Nauheim, Germany

⁴⁸U.O. Immunologia Clinica - Centro di Riferimento per le Malattie Autoimmuni Sistemiche, Milano, Italy

⁴⁹Department of Rheumatology, University Hospital of Gentofte, Hellerup, Denmark

⁵⁰Servicio de Reumatología, Hospital Ramon Y Cajal, Madrid, Spain

⁵¹Department of Rheumatology, Rikshospitalet University Hospital, Oslo, Norway

⁵²Department of Internal Medicine, Hôpital Claude Huriez, Lille cedex, France

⁵³Department of Internal Medicine and Medical Specialities, "Sapienza" University of Rome, Italy

⁵⁴Department of Rheumatology - St. Mary Hospital, Carol Davila, University of

Medicine and Pharmacy, Bucharest, Romania

⁵⁵Department of Internal Medicine 3, University Hospital Erlangen, Germany

⁵⁶ Division of Rheumatology, Istituto Gaetano Pini, Department of Clinical Sciences & Community Health, University of Milano, Milano, Italy ⁵⁷Department of Internal Medicine, Hôpital Cochin, Paris, France

⁵⁸University of Ghent, Department of Rheumatology, Gent, Belgium

⁵⁹U.O. Reumatologia-Università degli Studi di Foggia, Ospedale "Col. D'Avanzo",

Foggia, Italy

⁶⁰Dipartimento di Medicina, Ospedale San Gerardo, Monza, Italy

⁶¹Department of Dermatology and Allergy of the TU Munich, Germany

⁶²Department of Rheumatology and Internal Diseases, Wroclaw University of

Medicine, Wroclaw, Poland

⁶³Endokrinologikum Frankfurt, Germany

⁶⁴Division of Rheumatology, Department of Medicine III/Department of Dermatology,

University Medical Center Carl Gustav Carus, Technical University of Dresden,

Germany

⁶⁵Catholic University of Leuven, Department of Rheumatology, Leuven, Belgium

⁶⁶University Hospital Centre Zagreb, Division of Clinical Immunology and

Rheumatology, Department of Medicine, Zagreb, Croatia

⁶⁷Hospital de Clínicas da Universidade Federal do Paraná, Curitiba - Paraná, Brasil

⁶⁸Municipal Centres of Research in Scleroderma, Hospital "Sacred Trinity", Department of Rheumatology/ Department of Rheumatology, Republican Clinical Hospital, Chisinau, Republic of Moldova

⁶⁹Department of Medicine, Unit of Internal Medicine, Valence cedex 9, France
 ⁷⁰Dunedin School of Medicine, Dunedin, New Zealand

⁷¹Department of Medicine, University of Otago, Christchurch, New Zealand

⁷²Waikato University Hospital, Rheumatology Unit, Hamilton City, New Zealand

⁷³Department of Rheumatology, Bone and Joint Unit, St. Vincent's University

Hospital, Dublin, Ireland

⁷⁴Reumatologia e Inmunologia Clinica, Hospital Regional Universitario Jose Ma Cabral y Baez, Clinica Corominas, Santiago, Dominican Republic

⁷⁵Department of Rheumatology, Peking Union Medical College Hospital (West

Campus), Chinese Academy of Medical Sciences, Beijing, China

⁷⁶Centro per la Sclerosi Sistemica - Dipartimento di Medicina Clinica, Università La

Sapienza, Policlinico Umberto I, Roma, Italy

⁷⁷Clinical Emergency Hospital St. Pantelimon, Bucharest, Romania

⁷⁸U.O. di Reumatologia, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy

⁷⁹Division of Rheumatology & Rehabilitation GR.T.Popa, Center for Biomedical

Research, European Center for Translational Research, "GR.T.Popa" University of

Medicine and Pharmacy, Rehabilitation Hospital, Iasi, Romania

⁸⁰Department of Rheumatology and Clinical Immunology/Allergology, Inselspital, University

of Bern, Switzerland

⁸¹Hospital Universitario Madrid Norte Sanchinarro, Madrid, Spain

⁸²University Hospital of Strasbourg-Department of Rheumatology, Hôpital de

Hautepierre, Service de Rhumatologie, Strasbourg Cedex, France

⁸³Department of Rheumatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel

⁸⁴State Research Institute for Innovative Medicine, Vilnius University, Vilnius,

Lithuania

⁸⁵Tulane University Lung Center, Tulane/University Medical Center Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA

⁸⁶Osteoarticular Diseases and Osteoporosis Centre, Pharmacology and Clinical Pharmacological Research Centre, School of medicine - University of Buenos Aires,

Rheumatology and Collagenopathies Department, Ramos Mejía Hospital, Buenos

Aires, Argentina

⁸⁷USSD Reumatologia, Ospetali Riuniti di Bergamo, Italy

⁸⁸Department of Rheumatology, Clinical Immunology and Allergy, Lausanne, Switzerland
 ⁸⁹Clinical Immunology and Internal Medicine, National Referral Center for Systemic Autoimmune Diseases, Strasbourg, France

Correspondence and reprints request to:

Oliver Distler, MD, Division of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091 Zürich, Switzerland, E-mail: Oliver.Distler@usz.ch, Tel: +41 44 255 2977

Supplementary Methods

Patients and study design

The longitudinally-followed EUSTAR cohort was analysed for this observational study. The whole EUSTAR dataset, consisting of 12,274 patients at the time of the first data export (20.02.2015), was considered.

The following inclusion criteria were used for cohort selection: diagnosis of dcSSc, fulfilment of ACR1980 criteria, mRSS \geq 7 at the first visit (baseline) and available data for mRSS at 12±2 months follow-up.

Patients with dcSSc were identified according to LeRoy et al [1] or, in case of missing values for the LeRoy criteria, by the extent of skin involvement at any visit. The minimum

mRSS \geq 7 was chosen because it reflects the lowest value classifiable as dcSSc, thus allowing the inclusion of dcSSc patients with less severe to extensive skin fibrosis. The 1 year followup has been shown adequate for capturing significant changes in mRSS and is often used in clinical trials in skin fibrosis in SSc.[2]

The clinical data in EUSTAR are prospectively collected in a multicentre approach following a standardized protocol.[3] Regular training courses in skin scoring are organized by EUSTAR and all centres are advised to have the same examiner assessing the skin score in individual patients at follow-up visits.[4] All laboratory investigations including immunological tests are performed according to the local practices of each contributing center, in accordance to international quality standards. Quality indicators for data from the registry include regular external monitoring of large centres, and plausibility checks on key items with written requests to centres for clarification. Ethics approval has been obtained from the respective local ethics committees by all participating EUSTAR centres.

Statistical analysis

The statistical analysis was performed by the biostatistician (NG) using R Version 3.1.0 (packages Hmsic, rms and mice).[5-8]

Definition of variables

The primary endpoint, improvement of skin fibrosis, was defined as a decrease in mRSS of >5 points AND \geq 25 % within 1 year. The reduction of >5 points AND \geq 25% was chosen in order to capture the minimally clinically important difference.[9] Similarly, progression of skin fibrosis was defined as an increase in mRSS of >5 points AND \geq 25 % within one year as used previously.[10]

All standard EUSTAR parameters are described elsewhere.[11,12] The specific variables used for this study are explained below.

Immunosuppressive treatment was defined as explicit documentation of treatment with cyclophosphamide, methotrexate, azathioprine, mycophenolate, d-penicillamine, rituximab, imatinib, TNF inhibitors, and/or prednisone >10mg/day, either at baseline or at follow up visit. This set of medications was chosen because it covers the most relevant and also consistently-reported immunosuppressive agents in the EUSTAR database. Information about immunosuppressive drugs was collected systematically only after 2009, after data collection changed from paper case report forms (CRFs) to electronic CRFs. Patients with mention of receiving at least one of these agents at either baseline or 12-months' follow-up were classified as being treated with immunosuppressives, whereas those with negative inputs for all agents were classified as not having received immunosuppression.

Lung fibrosis was defined as fibrosis on HRCT and, additionally, as fibrosis on chest X-ray.

Selection of parameters for multivariable analysis

Parameters for multivariable analysis were selected exclusively based on expert opinion. Scleroderma experts (CM, OK, OD, YA, RD) were asked to suggest parameters that could be important for skin improvement, taking into account face validity, clinical and scientific reasoning. All suggestions were gathered as received, adding to a total of 19 parameters. Out of these, to allow a trustworthy imputation, only the parameters with >50% valid values were further considered for the analysis. This was acknowledged as a limitation. Regressors were no more likely than non-regressors to have missing values on any of the variables. An overview on all the suggested parameters is presented in Table S1, whereas the ones finally selected for the analysis are also shown in Table 2, main manuscript. Table S1. Overview on missing data for the candidate predictors of skin improvementsuggested by the scleroderma experts

Variable	Missing	
	Ν	%
Baseline mRSS	0	0.0
Disease duration	65	7.1
ANA positive	11	1.2
Anti Scl70 positive	33	3.6
Joint contractures	3	0.3
Tendon friction rubs	5	0.5
Proteinuria	32	3.5
Conduction blocks	42	4.6
Abnormal diastolic function	55	6.0
Fibrosis on chest X-ray	70	7.6
DLCO≥70%	298	32.4
Immunosuppression	483	52.6
Active digital ulcers	525	57.1
Scleredema (puffy fingers)	529	57.6
CRP elevation	545	59.3
ESR<25mm/1h	551	60.0
LVEF <45%	601	65.4
Lung fibrosis on HRCT	632	68.8
Anti-RNA polymerase III positive	704	76.6

Abbreviations: mRSS: modified Rodnan skin score; ANA: antinuclear antibodies; X-ray: radiography; DLCO: diffusion capacity of the lung for carbon monoxide; CRP: C-reactive

protein; ESR: erythrocyte sedimentation rate; LVEF: left ventricular ejection fraction; HRCT: high resolution computed tomography of the chest.

A comparison of the selected candidate variables between the patients who met all inclusion criteria (diagnosis of dcSSc, fulfilment of ACR1980 criteria, mRSS \geq 7 at the first visit and available data for mRSS at 12±2 months follow-up) and were, therefore, included into the analysis ("selected") and those patients who could not be analyzed because they did not have a second follow-up visit within the required timeframe ("not selected") did not reveal significant differences between these two groups (Table S2).

Table S2. Frequencies of the candidate predictors of skin improvement in the selected cohort (patients with both baseline and 1-year follow up visits), compared to the non-selected patients with dcSSc but not meeting the two required consecutive visits.

Parameters	Selected (n=919)	Not selected (n=2310)
ANA positive	94.6%	93.3%
Scl70 positive	59.1%	58.3%
Tendon friction rubs	20.2%	18.2%
Proteinuria	8.3%	8.0%
Conductions blocks	12.4%	13.4%
Abnormal diastolic function	19.1%	18.7%
Lung fibrosis on X-ray	45.8%	49.2%
DLCO≥70%	42.5%	38.4%
Disease duration (months)	Median:42.5	Median:49
Baseline mRSS	Median:16	Median:18
Abbreviations: mRSS: modified Rodnan skin score; ANA: antinuclear antibodies; X-ray:		

radiography; DLCO: diffusion capacity of the lung for carbon monoxide; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate; LVEF: left ventricular ejection fraction; HRCT: high resolution computed tomography of the chest.

Imputation of missing data and predictive modelling

Single conditional mean imputation and validation through Bootstrap

A logistic regression model was fit after single conditional mean imputation of missing values. Multiple imputation is clearly superior to single conditional mean imputation, however, it is not possible to validate models with multiply imputed data. Therefore, the models were validated after single conditional mean imputation using the Bootstrap methods with 100 repetitions.

The method of single conditional mean imputation fills in missings with predicted values from using the multivariable imputation model based on non-missing data. Subsequently, a model was run with all potential predictors. Baseline mRSS was centered at 7 points as all included patients had mRSS \geq 7. The linearity assumption was relaxed for baseline mRSS and disease duration by including restricted spline functions with 4 knots. The interaction between disease duration and baseline mRSS was also tested, but proved to be insignificant, meaning that the effect of baseline mRSS on regression of dSSc did not depend on values of disease duration.

Multiple imputation

Multiple imputation was used to fit the full und reduced model and to get standard errors. Missing values were multiply imputed with help of the R package mice. For the imputation model, all variables from the full model were included, i.e., all 11 variables as well as the dependent variable "regression of mRSS". Moreover, the time of the first visit (before 2009 vs. 2009 or later) was also included as it was strongly related to nonresponse: data collection was changed to an online version between 2008 and 2009 and some of the items were not

collected until after 2009. In addition, variables with an absolute correlation with the target variables of at least 0.2 were included. Only variables with a proportion of usable cases (cases with missing data on the target variable that had observed values on the predictor) of at least 25% were retained in the imputation model as to many missing cases on the same cases for both the target and the predictor variable would not contain much information to impute the target variable. The order in which variables should be imputed was defined according to their number of missing cases. Depending on the scale of the target variable, multiple imputation was performed using either predictive mean matching (pmm) or logistic regression (logreg). Ten imputed data sets were generated. Imputation was assessed via density plots for plausibility, i.e. whether imputed data were possible and close to the observed data.

Supplementary results

Single mean imputation, development and validation of the prediction model

A model was run with all the selected potential predictors (Table 2). The Wald statistics indicated that disease duration could be modelled linearly (Table S3). Baseline mRSS, however, did not behave linearly. Therefore, a quadratic term was included for baseline mRSS. As the effects were clearly insignificant (P>0.7) for joint contractures and DLCO \geq 70%, these effects were excluded from any future models (Table S3 and S4).

Table S3. Wald statistics for the regression model for skin improvement at one year after single conditional mean imputation

Factor	Chi-square	Degrees of	P-value
		freedom	
ANA positive	1.28	1	0.259
Anti Scl70 positive	3.96	1	0.047
Joint contractures	0.01	1	0.919
Tendon friction rubs	7.74	1	0.030
Proteinuria	0.62	1	0.430
Conduction blocks	1.01	1	0.316
Abnormal diastolic	0.96	1	0.323
function			
Fibrosis on chest X-ray	1.19	1	0.276
DLCO≥70%	0.14	1	0.701
Baseline mRSS	70.08	3	<0.001
nonlinear	9.30	2	0.001
Disease duration	1.21	3	0.752

nonlinear	0.45	2	0.799
Total nonlinear	9.55	4	0.049
Total	89.38	15	< 0.0001

Abbreviations: mRSS: modified Rodnan skin score; ANA: antinuclear antibodies; X-ray: radiography; DLCO: diffusion capacity of the lung for carbon monoxide; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate; LVEF: left ventricular ejection fraction; HRCT: high resolution computed tomography of the chest.

The full regression model for prediction of skin improvement is shown in **Error! Reference** source not found.

Table S4. Full prediction model for skin improvement after single conditional mean
imputation

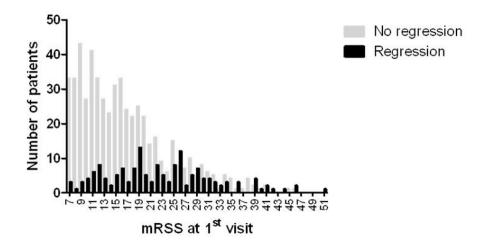
Variable	Coefficient	Standard error	Odds ratio	P-value
ANA positive	-0.400	0.34	0.67	0.229
Anti Scl70 positive	-0.358	0.18	0.70	0.044
Tendon friction rubs	-0.480	0.22	0.62	0.026
Proteinuria	0.227	0.29	1.25	0.431
Conduction blocks	0.220	0.24	1.25	0.365
Abnormal diastolic function	0.214	0.21	1.24	0.317
Fibrosis on chest X-ray	0.181	0.18	1.20	0.304
Baseline mRSS	0.202	0.04	1.22	<0.0001
Baseline mRSS ²	-0.003	0.00	1.00	0.006
Disease duration	-0.001	0.00	1.00	0.369
Intercept	-3.373	0.57	0.03	<0.0001

Abbreviations: mRSS: modified Rodnan skin score; ANA: antinuclear antibodies; X-ray:

radiography; DLCO: diffusion capacity of the lung for carbon monoxide; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate; LVEF: left ventricular ejection fraction; HRCT: high resolution computed tomography of the chest.

For the validation, the Bootstrap method was used. Table S5 shows the performance of the model. Discrimination refers to the ability of the model to separate subjects with and without the outcome. The C-index as a measure to estimate discrimination was 0.7231 for the full model, which was reduced to 0.7071 at validation. Calibration refers to the agreement between actual and predicted probabilities. The slope shrinkage factor was 0.9117 and the maximum absolute error in predicted probability was 0.0347. Thus, there was some overfitting present. Moreover, the model could only explain 13.4% of the variation at validation.

Table S5. Performance of the prediction model for skin improvement before and at validation


Performance measure	Full model	Validation
		full model
R ²	0.1615	0.1342
C-index (AUC)	0.7231	0.7071
Calibration slope	1.0000	0.9117
E _{max}	0.0000	0.0347

 R^2 : R-squared, the percentage of the response variable variation that is explained by a linear model. AUC: Area under the curve; E_{max} : maximum absolute error.

Baseline mRSS as a predictor of the change in skin score at one year

In the current cohort, 95/919 (10%) dcSSc patients who showed skin progression within one year had lower baseline mRSS (p<0.001). Baseline mRSS is thus a predictor of change in skin score after 1 year, patients with lower skin scores being prone to progress and those with higher skin scores to improve within the next 12 months (Figure S1).

Figure S1. Baseline mRSS in patients with and without skin regression. Patients with skin regression (black bars) have higher baseline mRSS values relative to patients without skin regression (grey bars).

Supplementary references:

1.LeRoy EC, Black C, Fleischmajer R, et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol. 1988 Feb; 15(2):202-5.

2.Wiese AB, Berrocal VJ, Furst DE, et al. Correlates and responsiveness to change of measures of skin and musculoskeletal disease in early diffuse systemic sclerosis. Arthritis

Care Res (Hoboken). 2014 Nov; 66(11):1731-9.

3.Muller-Ladner U, Tyndall A, Czirjak L, et al. Ten years EULAR Scleroderma Research and Trials (EUSTAR): what has been achieved? Ann Rheum Dis. 2014 Feb; 73(2):324-7.
4.Czirjak L, Nagy Z, Aringer M, et al. The EUSTAR model for teaching and implementing the modified Rodnan skin score in systemic sclerosis. Ann Rheum Dis. 2007 Jul; 66(7):966-9.
5. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ULR http://www.R-project.org/
6. Stef van Buuren, Karin Groothuis-Oudshoorn (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67. URL http://www.jstatsoft.org/v45/i03/.

7. Frank E Harrell Jr, with contributions from Charles Dupont and many others (2015).
Hmisc: Harrell Miscellaneous. R package version 3.16-0. URL http://CRAN.R-project.org/package=Hmisc

8. Frank E Harrell Jr (2015). Rms: Regression Modeling Strategies. R package version 4.3-1.
 ULR http://CRAN.R-project.org/package=rms

9. Khanna D, Furst DE, Hays RD, et al. Minimally important difference in diffuse systemic sclerosis: results from the D-penicillamine study. Annals of the rheumatic diseases. 2006 Oct; 65(10):1325-9.10. Walker UA, Tyndall A, Czirjak L, et al. Clinical risk assessment of organ manifestations in systemic sclerosis: a report from the EULAR Scleroderma Trials And Research group database. Ann Rheum Dis. 2007 Jun; 66(6):754-63.

11.Galluccio F, Walker UA, Nihtyanova S, et al. Registries in systemic sclerosis: a worldwide experience. Rheumatology (Oxford). 2011 Jan; 50(1):60-8.