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ABSTRACT
Objective Proteinase-activated receptor 2 (PAR2)
deficiency protects against cartilage degradation in
experimental osteoarthritis (OA). The wider impact of
this pathway upon OA-associated pathologies such as
osteophyte formation and pain is unknown. Herein, we
investigated early temporal bone and cartilage changes
in experimental OA in order to further elucidate the role
of PAR2 in OA pathogenesis.
Methods OA was induced in wild-type (WT) and
PAR2-deficient (PAR2−/−) mice by destabilisation of the
medial meniscus (DMM). Inflammation, cartilage
degradation and bone changes were monitored using
histology and microCT. In gene rescue experiments,
PAR2−/− mice were intra-articularly injected with human
PAR2 (hPAR2)-expressing adenovirus. Dynamic weight
bearing was used as a surrogate of OA-related pain.
Results Osteophytes formed within 7 days post-DMM
in WT mice but osteosclerosis was only evident from
14 days post induction. Importantly, PAR2 was expressed
in the proliferative/hypertrophic chondrocytes present
within osteophytes. In PAR2−/− mice, osteophytes
developed significantly less frequently but, when present,
were smaller and of greater density; no osteosclerosis
was observed in these mice up to day 28. The pattern of
weight bearing was altered in PAR2−/− mice, suggesting
reduced pain perception. The expression of hPAR2 in
PAR2−/− mice recapitulated osteophyte formation and
cartilage damage similar to that observed in WT mice.
However, osteosclerosis was absent, consistent with lack
of hPAR2 expression in subchondral bone.
Conclusions This study clearly demonstrates PAR2
plays a critical role, via chondrocytes, in osteophyte
development and subchondral bone changes, which
occur prior to PAR2-mediated cartilage damage. The
latter likely occurs independently of OA-related bone
changes.

INTRODUCTION
Osteoarthritis (OA) is the most common musculo-
skeletal disorder, affecting up to 80% of people
aged >65 years. Dysregulated proteolysis occurs in
OA, but there are no clinically effective matrix
metalloproteinase inhibitors. This has led to a
search for upstream regulatory and therapeutically
tractable pathways that drive downstream patho-
logical processes. Proteinase-activated receptor 2
(PAR2) is activated by specific serine proteases (eg,
matriptase1), which mediates signalling and

internalisation of the receptor complex. Recognised
to have a pro-inflammatory role in the musculoskel-
etal system,2 3 recent work suggests that PAR2 also
plays a role in OA.
We previously demonstrated in experimental OA

generated by destabilisation of the medial meniscus
(DMM) that PAR2-deficient mice (PAR2−/−) were
significantly protected from cartilage damage and
osteosclerosis,4 subsequently confirmed by
others.5 6 While these studies showed reduced sub-
chondral bone sclerosis in PAR2−/− mice, its role in
the early stages of disease, particularly osteophyte
development, has not been comprehensively inves-
tigated. The principal aim of the present study was
to examine the role of PAR2 in early disease and in
osteophyte formation using micro-CT (μCT). We
also characterised whether the pathogenic pheno-
type observed in wild-type (WT) mice following
DMM could be re-established in PAR2−/− mice fol-
lowing transfection of the knee with an adenoviral
vector expressing PAR2.

METHODS
Animals
Experiments were performed on adult (25–30 g)
male PAR2−/− mice (C57BL/6J backcrossed to at
least 10 generations), genetically modified as previ-
ously described,2 with WT (PAR2+/+) littermates as
controls. All procedures were in accordance with
Home Office regulations.

Induction of OA
As previously described,4 medial compartment OA
was induced by DMM following transection of the
left medial meniscotibial ligament under aseptic
conditions. Buprenorphine (Vetergesic; 30 μg intra-
peritoneally) was administered postoperatively and
animals maintained for 3, 7, 14 and 28 days, with
knee joints subsequently harvested for μCT and
histology.

PAR2 transfection
The left knee joints of five PAR2−/− mice were
injected with an adeno-associated viral vector (sero-
type 2/5), which included a cytomegalovirus pro-
moter for human PAR2 (hPAR2) and a C-terminal
mCherry tag (Penn State, USA). Five other mice
acted as controls following administration of AAV2/5
CMV Luciferase. The latter also enabled assessment
of the efficiency of transfection and longevity of
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the virus in the joint, using IVIS technology (see online supple-
mentary methods). Three days after injection, DMM was per-
formed with mice sacrificed after 4 weeks.

MicroCT
Knee joints were fixed in 4% paraformaldehyde solution for
24 h and subsequently stored in 70% EtOH, then analysed by
μCT to examine the calcified tissues using Skyscan 1272
(Bruker, Belgium; 0.5 aluminium filter, 50 kV, 200 mA, voxel
size 4.57 μm, 0.5° rotation angle). Scans were reconstructed in
NRecon software (Bruker, Belgium), with stacks analysed as
follows: (1) osteophytes were identified in three-dimensional
reconstructions of the stacks as detailed (see online supplemen-
tary methods) and (2) subchondral bone was analysed by select-
ing a volume of interest, delineating the trabecular structure
within the tibial epiphysis. Parameters were assessed as a medial/
lateral ratio and compared with the contralateral leg using a
paired t test.

Assessment of cartilage damage
Histological analysis of progression and severity of cartilage
damage was undertaken on joints previously scanned, then dec-
alcified (Formical 2000; Decal Chemical, New York, USA) over-
night. Joints were embedded in paraffin wax and coronal
sections (6 μm) cut then stained with haematoxylin, safranin-O/
fast green. Using a validated scoring system7 ranging from
0 (normal) to 6 (>80% loss of cartilage), the tibial quadrant in
8–10 sections from each mouse was graded by two scorers
blinded to the specimens, with scores averaged. There was good
agreement between scorers with intraclass correlation coefficient
of 0.9 (95% CI 0.72 to 0.97), the mean difference in score
being 0.12 (95% CI −0.39 to 0.63).

Immunohistochemistry
Following decalcification, sections were deparaffinised, rehy-
drated and probed with selected antibodies. Anti-SOX9 mono-
clonal antibody (Millipore, UK), anti-F4/80 (Abcam, UK),
anti-mCherry (Abcam) and anti-Runx2 (Insight, UK) were used
as well as SAM11 (Santa Cruz Biotech, USA). Primary anti-
bodies were detected using the Vectastain ABC kit with a sec-
ondary pan-specific biotinylated antibody (Vectorlabs, UK),
visualised using diaminobenzidine (DAB; Vectorlabs) and coun-
terstained with haematoxylin (Sigma, UK).

Assessment of synovitis
This was assessed initially using IVIS 200 imaging (Xenogen,
California, USA) using the myeloperoxidase/luminol system and
scanned at various time points following DMM. In addition,
synovitis was assessed histologically using a recently developed
scoring system.6 This was modified to focus only on pannus for-
mation, synovial membrane thickening and subsynovial hyper-
plasia (see online supplementary table S1). Agreement between
scorers was good with intraclass correlation coefficient of 0.88
(95% CI 0.65 to 0.95), the mean difference in score being 0.1
(95% CI −0.46 to 0.67).

Dynamic weight bearing
As an indirect indicator of pain, limb weight bearing was
assessed in mice before and after surgery using the BioSeb
chamber (BioSeb, Marseilles, France). Animals were individually
recorded for 5 min, of which a minimum of 2 min was subse-
quently validated and analysed. The parameters examined were
the load on the front paws and the per cent of time spent on
the front paws.

Statistical analysis
Data were tested for normality (Sigmastat 2.03; SPSS) and
expressed in graphs as mean±SEM with comparisons by
one-way or two-way repeated-measures analysis of variance
(ANOVA) and multiple comparisons using Bonferroni
correction.

RESULTS
Osteophyte development
Osteophytes were undetectable in sham-operated mice.
Development of osteophytes in WT mice was observed from
7 days post DMM (figure 1A), which increased in size and
number over time (figure 1D, E). Initially arboreal in appear-
ance (day 14, figure 1B, C), an additional layer of bone formed
by day 28 (figure 1A–C). However, large protruding osteo-
phytes were still evident in 12/13 WT mice at that time point
(figure 1A, B). While PAR2−/− mice similarly developed an add-
itional bone layer (see online supplementary figure S1), only
5/11 exhibited osteophytes at day 28. If present, these were
smaller and did not increase in size with time (figure 1D, E).
The composition of osteophytes in PAR2−/− mice differed from
WT, with increased bone density even at the point of first assess-
ment (figure 1E).

Osteophyte cell phenotype
Mineralised osteophytes identified by mCT (figure 2A, B) were
histologically characterised as being of a chondrocytic pheno-
type (figure 2C–E). Subsequent immunohistochemical analysis
revealed SOX9 and Runx-2 expression, confirming that these
cells were chondrocytes with a proliferative/hypertrophic pheno-
type8 (figure 2F, G). These prehypertrophic chondrocytes also
strongly expressed PAR2 (figure 2H), but this appeared to be
pathological because, although cells in the growth plate
expressed both SOX9 (figure 2I) and Runx2 (figure 2J), PAR2
was absent in growth plate chondrocytes (figure 2K).

Cartilage damage following DMM
Mean cartilage damage scores were temporally compared fol-
lowing DMM or sham operation in WT mice. There was no
observed cartilage damage 3 days following DMM or sham
operation (data not shown), and while a tendency to increased
scores was observed at 7 and 14 days, these did not differ sig-
nificantly compared with sham. However, by day 28 structural
damage was evident in DMM mice and scores differed signifi-
cantly from the earlier DMM time points (figure 2L). For the
sham-operated group, there was no significant difference in
scores across time points.

A comparison of cartilage damage scores following DMM
showed no difference between WTand PAR2−/− mice at day 14,
but by day 28, these groups differed significantly (figure 2M),
with scores in the PAR2−/− mice approximately half of those in
the WT mice. The scores in the PAR2−/− group did not signifi-
cantly increase between the day 14 and 28 time points, nor was
there any difference compared with sham (p=0.43 and 0.13,
respectively).

Subchondral bone changes and weight bearing
following DMM
mCT analysis of the subchondral trabecular bone in WT mice
showed no significant changes in the bone volume over tissue
volume medial to lateral ratio at days 3 and 7 post DMM.
However, by day 14 post-DMM surgery, the operated (ipsilat-
eral) knee in WT mice significantly increased compared with
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the contralateral knee, which was maintained through day 28
(figure 3A). In PAR2−/− mice, there was no significant difference
between contralateral and ipsilateral knees following DMM
surgery at days 14 and 28. The difference between WT and
PAR2−/− mice was reflected in the greater medial tibial subchon-
dral bone density in the WT mice (figure 3B).

To assess OA-related pain, measurement of weight bearing
4 weeks post DMM showed a difference over time between
groups, WT mice placing significantly more load on the front
paws than PAR2−/− mice (p=0.034, two-way ANOVA; figure 3C).
In sham-operated mice, there was no significant difference
between genotypes (data not shown).

Synovitis following DMM
Although not considered to be an inflammatory OA model,9 a
recent investigation using a novel scoring system observed low
level of synovitis following DMM compared with sham

controls.6 However, synovitis scores did not differ between WT
and PAR2−/− mice. Given that PAR2 is recognised to be
pro-inflammatory,10 combined with substantial reduction of
adjuvant-induced monoarthritis in PAR2−/− mice,2 we assessed
synovitis in the current study.

Although myeloperoxidase activity, indicative of synovitis,
was detectable using IVIS imaging in an adjuvant monoarthritis
model (positive control), no sustained signal was observed fol-
lowing DMM (see online supplementary figure S2). However,
using our modified synovitis histological scoring system, we
found evidence of synovitis following DMM in WT mice com-
pared with sham (figure 4A, B). Macrophage-like F4/80+ cells
were detected in synovia 7 days following DMM (figure 4C).
Compared with sham-operated, synovitis scores following
DMM were significantly higher in WT at 7 and 14, but not
28 days (figure 4D). Synovitis scores following DMM were
similar in WT and PAR2−/− mice at day 14 postoperatively

Figure 1 Time course of osteophyte
development (A) microCT (μCT) images
showing time course of developing
osteophytes (arrows) following
destabilisation of the medial meniscus
(DMM) in wild-type (WT) mice.
Cartoons depict development of
osteophytes (1) and the expansion of
the subchondral plate (2). By day 28,
the expansion of the subchondral bone
is complete, yet protruding
osteophytes remain a prominent
feature. (B) Two-dimensional μCT
magnification of the medial anterior
side of the subchondral bone and (C)
their corresponding three-dimensional
images. (D) μCT images showing
representative examples of osteophytes
(circled) at different time points in WT
(PAR2+/+) and proteinase-activated
receptor 2 (PAR2)-deficient mice
(PAR2−/−). (E) Quantitative data
showing reduced osteophyte number
and volume but elevated bone content
in PAR2−/− mice compared with WT
littermates. *p<0.05; ***p<0.001
comparing PAR2+/+ to PAR2−/− mice.
n=10–12.
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(figure 4E), and although decreased at day 28 in PAR2−/− mice,
this was not significant (p=0.057). Nevertheless, while there
was a strong relationship between cartilage damage and synovitis
scores in WT mice at day 28 (r2=0.59, p=0.026; figure 4F),
there was no comparable correlation (r2=0.07, p=0.2) for
PAR2−/− mice (figure 4G).

Restoration of pathogenic phenotype
As deletion4–6 or inhibition4 of PAR2 confers protection from
OA in the DMM model, we investigated whether intra-articular
injection of a viral vector expressing mCherry-tagged hPAR2 in
PAR2−/− mice restores the pathogenic phenotype. A parallel
group of PAR2−/− mice received an intra-articular injection of

Figure 2 Cell phenotype in
developing osteophytes and articular
cartilage damage following
destabilisation of the medial meniscus
(DMM) three-dimensional
reconstruction of μCT data set (A) and
cross-sectional image (B) showing the
presence of an osteophyte (circled) in a
wild-type (WT) mouse 14 days
following DMM. This was confirmed by
histological appearance of the same
osteophyte (C) and at higher
magnification (D and E). Cells in
osteophytes have a chondrocytic
appearance and express SOX9 (F),
Runx2 (G) and proteinase-activated
receptor 2 (PAR2) (H). Cells (arrowed)
in the growth plate express SOX9 (I)
and Runx2 ( J) but not PAR2 (K). Scale
bars F, G, H=10 μm; I, J, K=20 μm. (L)
Averaged cartilage damage scores at
different time points following DMM
compared with sham-operated WT
mice. **p<0.005, DMM versus sham;
§p<0.02 DMM comparison at different
time points. n=4–8. (M) Cartilage
damage scores following DMM
comparing PAR2+/+ to PAR2−/− mice.
**p<0.005; §p<0.02. n=8/group.

4 Huesa C, et al. Ann Rheum Dis 2015;0:1–9. doi:10.1136/annrheumdis-2015-208268

Basic and translational research
 on A

pril 23, 2024 by guest. P
rotected by copyright.

http://ard.bm
j.com

/
A

nn R
heum

 D
is: first published as 10.1136/annrheum

dis-2015-208268 on 23 D
ecem

ber 2015. D
ow

nloaded from
 

http://ard.bmj.com/


an AAV2/5 control vector expressing the luciferase gene.
A strong luciferase signal was observed in mice up to 28 days
following DMM (see online supplementary figure S3) confirm-
ing transfection longevity. Using an AAV-2/5 lacZ vector,
β-galactosidase expression in articular chondrocytes was evident
3 weeks following injection and this was further confirmed by the
presence of mCherry staining in chondrocytes and the synovial
membrane 28 days following DMM in hPAR2 but not control
vector-transfected mice (see online supplementary figure S3).
Interestingly, there was no mCherry staining in the subchondral
bone of hPAR2-transfected mice. In all cases (5/5),
hPAR2-transfected mice developed osteophytes (figure 5A) con-
sistent with those observed in WT mice, whereas in the control
group, only 2/5 developed small osteophytes (figure 5B, C).
Similarly, cartilage damage scores were significantly lower in the

control group compared with the hPAR2-transfected group, and
the former did not differ from sham-operated PAR2−/− mice
(figure 5D). Comparisons with WT did not show any differences
(see online supplementary figure S4). Following DMM in
PAR2−/− mice, cartilage damage was present in the
hPAR2-transfected group despite no significant difference in
subchondral bone sclerosis compared with control vector,
non-transfected or sham-operated PAR2−/− mice (figure 5E),
unlike WT mice, which showed significantly greater bone
sclerosis compared with sham (figure 5F).

DISCUSSION
While others have reported bone changes in the DMM model
using mCT,11 12 the present study is the first to investigate early
osteophyte development in this model and characterise the

Figure 3 Subchondral bone changes
following destabilisation of the medial
meniscus (DMM). (A) Comparison of
bone volume over tissue volume (BV/
TV) changes 14 and 28 days following
sham or DMM operation in wild-type
(WT) or proteinase-activated receptor
2-deficient (PAR2−/−) mice.
Significance values refer to differences
in the BV/TV medial tibial to lateral
tibial ratio comparing the contralateral
unoperated knee (Contra) to the
operated (Ipsi) knee. Each line refers to
an individual mouse. (n=6–9). (B)
Representative three-dimensional
models of contralateral medial tibial
subchondral trabecular region
compared with their ipsilateral
(operated) counterpart 28 days after
DMM showing increased subchondral
bone density in the operated WT knee.
Bone is shaded light grey and made
translucent to allow visualisation of
bone marrow spaces (dark grey).
(C) Time course of dynamic weight
bearing, measuring the load on the
front paws normalised to pre-surgical
load in DMM-operated WT and
PAR2−/− mice. n=5–6.
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temporal role of PAR2 in osteophyte emergence. An important
observation was that WT mice developed osteophytes within
7 days from induction, which continued to enlarge over time. We
hypothesise that osteophytes develop to expand the tibial plateau
area, the latter having been proposed as a response mechanism to
altered biomechanical loading in OA.13 14 Expansion was visua-
lised by day 28 as a second layer of bone on the medial aspect
revealed by transaxial and coronal mCT sections. While a compar-
able process occurs in WT and PAR2−/− mice, and therefore not
PAR2-dependent, this appears dysregulated in the WT as evi-
denced by a high incidence of large mineralised osteophytes by
day 28. Although osteophytes were detectable in both WT and
<50% of PAR2−/− mice, there were clear differences in inci-
dence, size, mineralisation and subsequent enlargement. This con-
trasts with a recent histological analysis, which found no
differences in osteophyte maturity and size at 4 weeks post
DMM.6 This may reflect the different analysis methods used,
with mCT providing a more quantitative measure of pathology.
The differences observed in osteophyte parameters between gen-
otypes suggest a role for PAR2 in OA-related osteophyte matur-
ation. This is supported by the finding of PAR2 expression in
proliferative cells within osteophytes, identified immunohisto-
chemically as being derived from the chondrocyte lineage, the
latter consistent with previous observations.15 Interestingly,
although chondrocyte markers SOX9 and Runx2 are present in
the growth plate, PAR2 is absent, which suggests that its presence
in osteophytes is pathological and could explain why PAR2−/−

mice do not exhibit an abnormal growth phenotype. Osteophyte
formation has parallels with callus formation, and it is interesting
to note that callus morphology is altered in PAR2−/− mice.16

Osteophyte formation is clearly PAR2-dependent, and a prelimin-
ary observation that serum levels of let-7e were lower in naive
PAR2−/− mice compared with WT littermates (see online supple-
mentary figure S5) suggests involvement of let-7e in the pathway.

This study temporally characterised the onset of pathological
changes in DMM, demonstrating that observable subchondral
bone changes preceded cartilage damage in this model. This
may reflect differences in the dynamic responsiveness of skeletal
versus cartilaginous tissues.17 Consistent with previous histo-
logical studies,4–6 mCT analysis of the joint demonstrated osteo-
sclerosis was clearly evident following DMM in WT but not
PAR2−/− mice, suggesting a role for this receptor in mechano-
sensing and/or mechanotransduction. The time differential
between bone and cartilage changes appears to support the
hypothesis that osteosclerosis following DMM may alter
loading, resulting in direct cartilage damage.6 This implies
osteosclerosis is a necessary prerequisite for cartilage damage.
Indeed, cartilage damage and subchondral bone thickening in
this OA model were found to be significantly correlated in a
recent study.6 However, our observation of significant cartilage
damage without associated osteosclerosis in hPAR2-transfected
mice does not support this hypothesis. Furthermore, inhibiting
sclerostin in a rat injury model of OA resulted in a significant
increase in epiphyseal bone density but no difference in cartilage
damage.18 This leads us to conclude that cartilage damage in
the DMM model is mediated via PAR2, independent of
osteosclerosis.

A novel approach was use of dynamic weight bearing (DWB)
as a surrogate assessment of OA-related pain. The pattern of
weight bearing across the limbs in the PAR2−/− mouse clearly

Figure 4 Time course of synovitis
following destabilisation of the medial
meniscus (DMM). Histological
appearance of the medial
compartment of the knee joint 28 days
following sham operation (A) or DMM
(B) in proteinase-activated receptor
2-deficient (PAR2+/+) mice, showing
thickening of the medial collateral
ligament and cellular hyperplasia in
the latter. Scale bar=100 μm. (C)
Immunohistochemical analysis of the
synovium 28 days post DMM in a
PAR2+/+ mouse showing some cells
staining for the macrophage marker
F4/80. Scale bar=20 μm. (D) Synovitis
scores in wild-type (WT) mice at
different time points following DMM
or sham operation. n=4–8. *p<0.05,
sham compared with DMM. (E)
Synovitis scores at 14 and 28 days
post DMM comparing PAR2+/+ to
PAR2−/− mice. Synovitis and cartilage
damage scores at day 28 are
significantly correlated for WT (F) but
not PAR2−/− (G) mice. n=8/group.
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differed from the WT, consistent with reduced nociception in
the former. This is consistent with PAR2−/− mice having dimin-
ished hyperalgesia,19 and impairment of hindlimb weight
bearing in WT rodents following knee joint injection of a PAR2
agonist.20 DWB, thus, offers a valuable non-invasive method for
assessment of pain in murine models of arthritis.

Recently, analysis of cartilage damage revealed little change
between WT and PAR2−/− mice 7 days post-DMM induction,6

so we investigated whether damage is evident at day 14. In WT,
there was no significant change until day 28 compared with
sham-operated, hence no difference was observed compared
with PAR2−/− mice at day 14. Confirming our earlier study,4

PAR2 deletion protects against cartilage damage 28 days post

DMM, consistent with other investigations of PAR2 in this OA
model.5 6 Notably, this is restricted to PAR2 as PAR1 deletion
does not confer such protection,6 underlining the specificity of
PAR2 in OA pathogenesis.

There is increasing recognition of the role of synovial inflam-
mation in OA pathogenesis as it is linked to the severity of knee
OA,21 and synovitis is detectable by MRI in 90% of patients
with knee OA.22 In humans, PAR2 is associated with synovitis in
OA with the degree of synovitis and PAR2 expression being
strongly correlated.23 Thus, PAR2 is a likely contributor to syno-
vitis. Although the DMM model is considered non-
inflammatory,9 this has been challenged recently6 where histo-
logical evidence of synovitis was detected. In this previous study,

Figure 5 Restoration of pathogenic
phenotype. Examples of 3D microCT
images taken 4 weeks following
destabilisation of the medial meniscus
(DMM) from proteinase-activated
receptor 2-deficient (PAR2−/−) mice
administered either (A) the AAV2/5
adenoviral vector containing human
PAR2 (hPAR2) (osteophytes highlighted
in red) or (B) luciferase control. (C)
Osteophyte volume was greater in the
hPAR2-treated mice compared with
mice administered control vector (CV),
albeit with large variability. (D)
Cartilage damage scores in PAR2−/−

mice administered hPAR2 were greater
than either sham-operated or
CV-administered PAR2−/− mice. Bone
volume over tissue volume (BV/TV)
medial to lateral ratio of the ipsilateral
leg showed no significant differences
in all the PAR2−/− groups (E) while
this was significantly greater in
wild-type (WT) DMM mice compared
with sham (F). *p<0.05; §p<0.01.
n=5.
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synovitis scores at early time points (3–14 days) did not differ
between sham-operated and DMM groups, although these
diverged later. However, there was no difference in synovitis
scores between WT and PAR2−/− mice at 28 days post induction
of DMM.6 Conversely, we herein found that WT scores differed
significantly between sham-operated and DMM groups at days 7
and 14, with a clear trend for scores to be lower in PAR2−/−

mice. This discrepancy, particularly in sham-operated mice, may
reflect the plane of section: we took coronal rather than sagittal
sections as used by Jackson et al,6 which included regions of the
knee exposed during surgery. Sagittal sectioning would include
regions of wound healing, presumably similar in both sham and
DMM WT groups. Indeed, the incision site was included as
Jackson et al6 consider inflammation associated with surgery a
major contributor to synovitis and the pathophysiology of joint
disease, particularly in early stages postoperatively (Little CB,
personal communication). This indicates a potential limitation
of the DMM model as it involves injury with consequent inflam-
mation. Further work is required to determine the causative role
(if any) of synovitis in OA pathogenesis and how PAR2 influ-
ences OA in DMM via its pro-inflammatory actions.

A key finding was that in PAR2−/− mice the OA phenotype
could be re-established by intra-articular administration of
hPAR2 using an adenoviral vector. Thus, PAR2 transfection pro-
motes cartilage degradation, confirming PAR2’s pathogenic role
in DMM. More surprisingly, osteophyte formation was also
affected, some hPAR2-transfected mice developing very large
osteophytes. Our data suggest that intra-articular transfection
will likely only introduce PAR2 into cells in the immediate vicin-
ity, indicating that in this context PAR2 may be directly affecting
chondrocyte proliferation/hypertrophy, leading to osteophyte
formation (figure 2). We also believe that transfection-induced
expression of hPAR2 in osteoblasts is unlikely, given the absence
of mCherry staining in subchondral bone (see online supple-
mentary figure S3), possibly explaining absence of osteosclerosis
in hPAR2-transfected mice following DMM. This in turn may
indicate that some pathogenic features in DMM are driven by
PAR2 mechanisms affecting chondrocytes. This view differs
from that proposed recently where interleukin-1α-induced deg-
radation in cartilage explant cultures from PAR2−/− mice was
not inhibited, leading the authors to suggest that extra-
cartilaginous mechanisms may drive pathogenesis.6

Our central conclusion is that OA-related changes in bone and
cartilage are dependent on, and therefore mediated by, PAR2,
accelerating the pathogenic phenotype. Moreover, our temporal
characterisation of early changes in OA demonstrates that
although bone changes precede, they do not necessarily drive car-
tilage damage, which appears to occur independently, indicated
by lack of osteosclerosis in hPAR2-transfected PAR2−/− mice.
This challenges a long-standing view that increased stiffness of
subchondral bone leads to overlying cartilage lesions.24 The pro-
tection offered by PAR2-deficiency may be related to the role of
this receptor in driving pathological chondrocyte differentiation/
proliferation. Therapeutically, targeting PAR2 may offer value not
only in abrogating OA structural changes, but also alleviating
arthritic pain.
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