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ABSTRACT
Objective To optimise a strategy for identifying gene 

expression signatures differentiating systemic lupus 

erythematosus (SLE) and antineutrophil cytoplasmic 

antibody-associated vasculitis that provide insight into 

disease pathogenesis and identify biomarkers.

Methods 44 vasculitis patients, 13 SLE patients and 

25 age and sex-matched controls were enrolled. CD4 

and CD8 T cells, B cells, monocytes and neutrophils 

were isolated from each patient and, together with 

unseparated peripheral blood mononuclear cells 

(PBMC), were hybridised to spotted oligonucleotide 

microarrays.

Results Using expression data obtained from purifi ed 

cells a substantial number of differentially expressed 

genes were identifi ed that were not detectable in the 

analysis of PBMC. Analysis of purifi ed T cells identifi ed 

a SLE-associated, CD4 T-cell signature consistent with 

type 1 interferon signalling driving the generation and 

survival of tissue homing T cells and thereby contributing 

to disease pathogenesis. Moreover, hierarchical clustering 

using expression data from purifi ed monocytes provided 

signifi cantly improved discrimination between the patient 

groups than that obtained using PBMC data, presumably 

because the differentially expressed genes refl ect 

genuine differences in processes underlying disease 

pathogenesis.

Conclusion Analysis of leucocyte subsets enabled 

the identifi cation of gene signatures of both pathogenic 

relevance and with better disease discrimination than 

those identifi ed in PBMC. This approach thus provides 

substantial advantages in the search for diagnostic and 

prognostic biomarkers in autoimmune disease.

The identifi cation of gene expression signatures 
differentiating patients with systemic lupus ery-
thematosus (SLE) and antineutrophil cytoplasmic 
antibody-associated small-vessel vasculitis (AAV) 
may well provide clinically relevant biomarkers as 
well as insights into disease pathogenesis.

Over the past decade the use of microarray-based 
expression profi ling as a tool for the identifi cation 
of both diagnostic and prognostic biomarkers has 
grown immensely. This has been most apparent 
in oncology, in which array-based gene signatures 
have been used to reveal novel clinically relevant 
patient subgroups,1 2 predict treatment response,3 
identify patients at risk of metastasis,4 and provide 
insight into the underlying molecular pathology.5 
Array-based diagnostic tests are starting to enter 
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clinical oncology practice as a direct consequence 
of this work.6

In autoimmune disease, unlike oncology, the 
choice of material to profi le is not straightfor-
ward. Most studies published so far have used 
heterogeneous populations of blood cells, either 
total leucocytes or Ficoll-purifi ed peripheral blood 
mononuclear cells (PBMC). As a consequence, 
many of the signatures that have been reported 
may be attributable to differences in the relative 
abundance of individual leucocyte populations, 
which has been suggested7 but not yet directly 
addressed.

One strategy to circumvent this issue and iden-
tify cell-intrinsic expression signatures would be to 
profi le purifi ed populations of cells. Whereas a few 
studies have profi led single populations of cells,8–10 
no studies have looked across all major leucocyte 
types simultaneously, or directly compared arrays 
of separated cells with those of PBMC. As a con-
sequence, many subtle, cell-type-specifi c changes 
may be missed,11 and signatures that are found may 
be attributable to differences in the relative abun-
dance of individual leucocyte populations. We have 
therefore developed a cell separation protocol that 
allows the isolation of CD4 and CD8 T cells, CD19 
B cells, CD14 monocytes and CD16 neutrophils 
from individual patients.12 Although this protocol 
utilises two sequential rounds of positive selection 
using magnetic beads, it produces cell samples in 
which gene expression levels are essentially identi-
cal to those of untouched cells.12

Whereas several studies have applied expres-
sion profi ling to the study of SLE,13–17 only one 
study has examined AAV.18 That study profi led 
unseparated leucocytes and showed some discrim-
ination between patients with AAV and SLE, but it 
did not address the issue of whether the gene sig-
natures observed could be explained by differences 
in the relative size of leucocyte subsets between 
their patient cohorts.

In this study we confi rm that controls and 
patients with AAV and SLE cannot be accurately 
discriminated at a transcriptional level using 
unseparated PBMC, but demonstrate for the fi rst 
time that arrays of purifi ed leucocyte subsets 
achieve superior  differentiation of disease and 
 control populations and allow identifi cation of 
novel disease-related expression signatures. The 
analysis of purifi ed leucocyte subsets demonstrated 
that the large majority of disease specifi c expression 
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differences found were not seen in the PBMC analysis. These 
cell intrinsic differences are likely to provide more insight into 
disease pathology and offer a greater chance of detecting clini-
cally useful biomarkers.

PATIENTS AND METHODS
Full details of patient cohorts and experimental procedures are 
provided online (see supplementary fi le).

Patient and control cohorts
Thirteen patients with active SLE and 44 patients with active 
AAV attending the lupus and vasculitis clinic at Addenbrooke’s 
Hospital, together with 25 age and sex-matched controls, were 
enrolled into the study (see supplementary tables 1 and 2, avail-
able online only).

Cell separation, RNA extraction and microarray hybridisation
PBMC, CD4 and CD8 T-cell, CD19 B-cell, CD14 monocyte 
and CD16 neutrophil samples were isolated as previously 
described.12 Following extraction, RNA was labelled and 
 hybridised to microarrays as previously described.19

Microarray data analysis
Raw image data were imported into R for normalisation and 
assessment of differential expression using the Limma package 
in bioconductor.20

RESULTS
Differences observed in the transcriptomes of unseparated 
leucocytes from normal controls and patients with SLE or AAV 
largely refl ect changes in their cellular composition. 
To  determine the extent of similarity between SLE and AAV 
at a transcriptional level we profi led unseparated PBMC RNA 
from 28 patients with AAV, 12 with SLE and 21 normal controls 
(arrays from four AAV, three SLE and four control samples failed 
quality control and were not included in subsequent analyses). 
Data for 15 255 of the probes on the array were present in all 61 
samples and were subjected to analysis of variance (ANOVA) 
with correction for multiple testing21 to identify differentially 
expressed genes among the three groups. This yielded 3549 
statistically signifi cant probes when the false discovery rate 
was set at 5% (supplementary table 3, available online only). 
Unsupervised hierarchical clustering using these data broadly 
separated the samples into three groups; however, they bore 
little resemblance to the original diagnostic classes (fi gure 1A). 
Group 1 contained 17 of 21 control samples; however, 45% of 
group 1 samples were from patients with AAV. Groups 2 and 3 
were composed predominantly of patient samples (26 of 30), 
with SLE and AAV being equally distributed between them.

Post hoc analysis of the differentially expressed probes identi-
fi ed the genes that best differentiated SLE patients from  controls 
(n=89, supplementary table 4, available online only), AAV 
patients from controls (n=61, supplementary table 5, available 
online only), and SLE and AAV patients (n=41, supplementary 
table 6, available online only). The transcripts differentiating 
SLE from control encode type 1 interferon-inducible proteins, 
immunoglobulin, or proteins expressed in immature granulocytes 
(fi gure 1B,C), consistent with previous reports.13 14 The 61 tran-
scripts differentiating AAV from control mainly encoded proteins 
expressed in immature granulocytes (fi gure 1D, see also Alcorta 
et al).18 The type 1 interferon signature was completely absent 
in the AAV patients (fi gure 1E). Consistent with this, analysis 

of the 41 probes discriminating SLE and AAV patients revealed 
that they were primarily transcripts upregulated in SLE, which 
encode immunoglobulin or type 1 interferon-inducible proteins. 
The granulopoiesis signature is thus common to both diseases, 
the type 1 interferon and plasmablast signatures are restricted to 
SLE.

The granulopoiesis signature has previously been  associated 
with contamination of the PBMC fraction by immature 
 granulocytes.13 This was confi rmed by fl ow cytometry (sup-
plementary fi gure 1A,B, available online only), and there was 
a strong  correlation between the expression of genes from the 
 granulopoiesis signature and immature granulocyte numbers 
(supplementary fi gure 1C, available online only).

Interestingly, while the interferon and granulopoiesis sig-
natures are found in almost all SLE patients, the plasmablast 
 signature is absent in approximately one third. Patients with 
the plasmablast signature had signifi cantly elevated serum IgG 
(fi gure 1F), and a trend towards higher antinuclear antibody 
and double-stranded DNA autoantibody levels (supplementary 
fi gure 2A, available online only). They had signifi cantly more 
active disease at enrolment (fi gure 1G), but no difference in 
fl are-free survival following induction therapy (supplementary 
fi gure 2B, available online only), suggesting the plasmablast 
 signature is associated with disease activity rather than 
 long-term prognosis.

The probes representing the interferon, plasmablast and 
granulopoiesis signatures represent only a small fraction of 
the differentially expressed genes (vertical blue bar, fi gure 1A). 
The majority of the remaining genes could be broken down 
into two broad groups, those either upregulated or downregu-
lated in controls compared with patients irrespective of diag-
nosis (fi gure 1A, vertical orange or yellow bar, respectively). 
Whereas these genes contained no obvious functional signa-
tures, closer examination revealed that those upregulated in 
controls tended to be expressed more highly in cells of the 
lymphoid lineage (supplementary  fi gure 3A, available online 
only), and those downregulated were expressed more highly in 
the myeloid  lineage (supplementary fi gure 3B, available online 
only). Analysis of PBMC  composition in AAV and SLE patients 
and controls revealed a signifi cant relative T-cell lymphopaenia 
affecting both the CD4 and CD8 populations in AAV patients, 
but just the CD4 population in SLE patients, together with a 
signifi cant relative monocytosis in both groups compared with 
controls (fi gure 1H). These differences in composition are likely 
to explain the majority of the expression differences observed 
earlier.

The ANOVA results also pointed to a CD8 T-cell signature 
 differentiating AAV patients and controls (vertical purple bar, 
 fi gure 1A), due to a number of genes primarily expressed in CD8 T 
cells being downregulated in AAV patients (supplementary table 7, 
available online only). This most likely refl ects the specifi c relative 
CD8 T-cell lymphopaenia seen in AAV patients (fi gure 1H–I).

Microarray analysis of purifi ed leucocyte subsets from AAV and 
SLE patients identifi es cell-intrinsic expression differences. 
To look for cell-specifi c expression changes that might provide 
clinically useful biomarkers we carried out a microarray analysis 
on purifi ed CD4 and CD8 T cells, B cells, monocytes and neu-
trophils isolated at the same time as the PBMC from SLE or AAV 
patients described earlier.

Imposition of a 1.5-fold change cut-off identifi ed 229 probes 
from the PBMC data that showed signifi cant differential 
 expression between SLE patients and controls (fi gure 2A). Of 
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sets was the interferon signature (fi gure 2A and supplementary 
fi gure 4, available online only).

In a similar analysis of the AAV samples, 843 probes 
were found to be differentially expressed in PBMC samples 
between patients and controls (fi gure 2B), most falling into the 
 ‘unassigned’ category. As in the SLE patients, there was little 
overlap between differentially expressed genes identifi ed in the 
purifi ed cell subsets and PBMC (specifi c examples in supple-
mentary  fi gure 4, available online only); from 8% in B cells to 
43% in CD4 T cells (fi gure 2B).

We performed quantitative PCR, which confi rmed the sig-
nifi cant correlation between expression measured by microar-
ray or quantitative PCR (supplementary fi gure 5, available 
online only).

these, 112 belonged to the interferon, granulopoiesis or plas-
mablast signatures, with the remaining 117 falling into the 
unassigned category. Analysis of the purifi ed leucocyte subsets 
identifi ed many more differentially expressed genes, with a 
remarkably small overlap with those found in PBMC (6.5% in 
neutrophils to 39% in monocytes; fi gure 2A and specifi c exam-
ples in supplementary fi gure 4, available online only). Of the 
1607 cell-specifi c genes differentiating disease from  controls seen 
across the fi ve cell types, 86% were missed on PBMC analysis. 
The plasmablast signature was not seen in the B-cell  samples, 
nor the granulopoiesis signature in the neutrophils,  further 
supporting the conclusion that these arise from  differences in 
PBMC composition between SLE patients and controls. The 
only expression signature seen consistently across all cell sub-

Figure 1 Differences in cellular composition largely drive gene expression signatures seen in comparisons of peripheral blood mononuclear cell (PBMC) 
samples. (A) Hierarchical clustering of PBMC samples from antineutrophil cytoplasmic antibody-associated small-vessel vasculitis (AAV) and systemic 
lupus erythematosus (SLE) patients and controls broadly separates the samples into three groups. The numbers below the heat map show the distribution 
of AAV, SLE and control samples between the three groups. Vertical bars identify the following gene signatures; interferon, plasmablast and granulopoiesis 
(blue), CD8 T cell (purple), lymphoid (orange) and myeloid (yellow). (B–E) Gene set enrichment analysis was performed to look for enrichment of the 
interferon and granulopoiesis signatures described by Bennett et al.13 (B) Interferon-inducible genes are signifi cantly enriched in SLE patients. (C and D) 
Granulopoiesis-associated genes are signifi cantly enriched in both (C) SLE and (D) AAV patients and (E) interferon-inducible genes are not enriched in AAV 
patients. (F) Serum IgG but not IgM levels correlate with the presence of the plasmablast signature. PB sig +ve and –ve indicates patients with or without 
the plasmablast signature, respectively. (G) The plasmablast signature is associated with increased disease activity at enrolment. Horizontal bars denote 
the mean, statistical signifi cance was determined using a t test. (H) AAV and SLE patients have reduced CD4 T-cell and increased CD14 monocyte levels 
and in addition, AAV patients have signifi cantly reduced CD8 T-cell levels compared with controls. Horizontal bars denote the mean, statistical signifi cance 
was determined using analysis of variance followed by post hoc testing, *p<0.05, **p<0.01, ***p<0.001. (I) CD8A messenger RNA levels correlate 
with the relative abundance of CD8 T cells in the PBMC samples arrayed.
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Purifi ed CD4 T-cell analysis reveals an SLE-specifi c  activation 
signature. 
Among the 211 genes that show signifi cant  differential 
expression in CD4 T cells between SLE patients and controls 
(supplementary table 8, available online only), the  biggest 
cluster represents interferon-inducible transcripts (fi gure 2A). 
In agreement with other studies,13 14 the upregulation of 
interferon- inducible genes was not seen in all patients, and was 
independent of treatment at enrolment (supplementary fi gure 
6, available online only).

To look for coordinated dysregulation of other pathways in 
the CD4 expressed genes differentially expressed in SLE patients 
we searched the KEGG (www.genome.ad.jp), BioCarta (www.
biocarta.com) and GenMAPP (www.genmapp.org)  databases 
using the Pathway Miner tool.22 This analysis revealed a 
 network of differentially expressed genes broadly related 
to T-cell  activation (fi gure 3A). An identical analysis of genes 
 differentially expressed in PBMC samples from SLE patients 
failed to reveal these  expression differences (supplementary 

 fi gure 7, available online only, and data not shown), as did a 
specifi c search for them using GSEA (fi gure 3B).

Interestingly, the expression of many genes in the network 
was strongly correlated with STAT1 expression (fi gure 3C), 
 suggesting that their expression may be regulated by signal-
ling downstream of the type 1 interferon receptor. In keeping 
with this, analysis of a 2 kb segment of DNA immediately 
upstream of the start site of each of the 28 genes in the sig-
nature revealed the presence of consensus interferon response 
factor (IRF) 3 and/or seven binding sites23 in the majority of 
cases (supplementary table 9, available online only). GSEA did 
not identify this signature in CD4 T cells from AAV patients 
(peak enrichment score 0.35, p=0.81), indicating that it may be 
SLE specifi c.

This fi nding is in agreement with the observation that type 
1 interferon signalling keeps activated murine T cells alive, 
 independent of a measurable effect on BCL2 or BCL2L1 (Bcl-X) 
levels.24 Consistent with this, we observed no difference in 
the expression level of these genes between SLE patients and 
controls (fi gure 3D); however, expression of the pro-apoptotic 
molecule BNIP3L is reduced and that of the anti-apoptotic mol-
ecule CFLAR elevated in SLE patients (fi gure 3D). Cell-specifi c 
array analysis has thus identifi ed a novel  interferon-associated, 
CD4 T-cell signature, which  immediately suggests a mecha-
nism for driving SLE pathogenesis.

Gene expression in monocytes differentiates patients with AAV 
and SLE from each other and from controls more robustly than 
PBMC data.
Gene expression data from unseparated PBMC samples 
is unable to discriminate SLE and AAV patients effi ciently 
from each other or from controls (fi gure 1A and supplemen-
tary fi gure 8, available online only). To determine whether 
expression data from purifi ed cells result in improved clus-
tering, we analysed monocyte-derived microarray data 
from 13 SLE patients, 44 AAV patients and 25 normal con-
trols (two SLE samples failed quality control). Data from 
20 495 probes were subjected to ANOVA with correction 
for  multiple testing to detect differentially expressed probes 
among the three groups. Post-hoc analysis identifi ed 15 probes 
that best differentiated AAV patients from controls, 38 probes 
that differentiated SLE patients from controls and 41 probes 
that separated AAV and SLE patients. Hierarchical clustering 
of the 82 monocyte samples with the non-redundant list of 
probes generated from this analysis (supplementary table 10, 
available online only) clearly separated the samples into three 
groups (fi gure 4). Of the 14 samples in group 1, 12 are SLE 
patients, in group 2, 20 of the 21 samples are controls, and 
in group 3, 42 of the 47 samples are AAV patients (fi gure 4). 
Therefore, in comparison with the clustering obtained using 
PBMC data (fi gure 1A and supplementary fi gure 8, available 
online only), the monocyte data gave a much cleaner separa-
tion between diagnostic groups.

The most prominent feature of the ANOVA-derived gene 
list is a cluster of 42 interferon-inducible genes (vertical blue 
bar, fi gure 4 and supplementary table 10, available online only), 
high expression of which differentiates the SLE patients in 
group1 from the rest. The remaining 16 probes predominantly 
 represent genes upregulated in both disease groups compared 
with  controls (supplementary table 10, available online only), 
and are enriched for genes encoding components of the acute 
phase response, including haptoglobin and orosomucoid 
 (supplementary table 10, available online only).

Figure 2 Expression profi ling purifi ed cells identify large numbers 
of novel expression differences. (A,B) Differential gene expression 
was measured in purifi ed cell subsets from both (A) systemic lupus 
erythematosus (SLE) and (B) antineutrophil cytoplasmic antibody-
associated small-vessel vasculitis (AAV) patients. Pie charts represent 
individual cell types and their size is proportional to the number of 
differentially expressed genes observed in each. Differentially expressed 
genes were defi ned as expression differences greater than 1.5-fold found 
to be statistically signifi cant following correction for multiple testing by 
setting the false discovery rate to 5%.
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DISCUSSION
While the analysis of PBMC array data may identify expres-
sion differences of pathological importance, for example, the 
interferon signature in SLE, it is clear that many of the differ-
ences between disease and controls are due to variation in the 
proportion of cell subsets and are thus not seen when purifi ed 
cell subsets are arrayed. Perhaps the best examples of such 
signatures are the plasmablast and granulocyte signatures 
seen in SLE patients; both refl ect plasmablasts or  immature 
 granulocytes present in the PBMC. Most differentially 
expressed genes found in purifi ed subsets were not found in 
PBMC. This was true for genes differentially expressed in rarer 
cell types, for example, B cells, but also for those expressed in 
both CD4 and CD8 cells, which together make up the biggest 
proportion of PBMC. Surprisingly, PBMC analysis even failed 
to detect expression differences unique to genes expressed in 
only a single cell type. However, once a gene signature has 

been identifi ed in purifi ed cells, it may then be feasible in fol-
low-up studies to test for the signature in unseparated cells 
using quantitative PCR of selected genes less infl uenced by 
population variation or by bioinformatics normalisation for 
cell proportions.

Analysis of purifi ed T cells revealed an SLE-associated T-cell 
signature not seen in PBMC analyses,13 14 which may play a role in 
pathogenesis. T cells infi ltrate infl amed organs and provide help 
for autoreactive B cells in SLE,25 and a number of T-cell defects 
have been reported in SLE patients.26 27 The  majority of the 
genes making up the T-cell signature has promoters that  contain 
consensus IRF3 and/or IRF7 binding sites and their expression 
levels correlate strongly with that of STAT1,  suggesting that the 
signature might be driven by type 1 interferon signalling.

One component of this signature is increased expression 
of CXCR6, the receptor for CXCL16,28 which is expressed on 
a proportion of memory T cells and CD16 natural killer cells 
and is upregulated on activation.29 CXCR6 defi nes a subset of 
memory/effector T cells with tissue-homing potential,30 and 
consistent with this CXCR6+ T cells are enriched in infl amed 
tissues from a number of infl ammatory conditions, including 
rheumatoid arthritis,30 Graves’ disease31 and sarcoidosis,32 and 
treatment with an anti-CXCL16 monoclonal antibody reduces 
the severity of collagen-induced arthritis in mice.33 This fi rst 
association of CXCR6 on CD4 T cells with SLE might thus be 
associated with tissue infl ammation.

Type 1 interferon signalling promotes activated T-cell 
 survival.24 The decreased expression of the pro-apoptotic 
 molecule BNIP3L in SLE patients is particularly interesting as 
it is a functional homologue of BNIP3, which has been shown 
to play a role in activation-induced T-cell death.34 Similarly, 
CFLAR, also upregulated by type 1 interferon,35 protects T cells 
from T-cell receptor-mediated apoptosis.36 This is an example of 

Figure 3 A gene signature consistent with T-cell activation is found 
in CD4 samples from systemic lupus erythematosus (SLE), but not 
antineutrophil cytoplasmic antibody-associated small-vessel vasculitis 
(AAV), patients. (A) Analysis of the differentially expressed genes in 
CD4 samples from SLE, but not AAV, patients (supplementary table 8, 
available online only) using Pathway Miner (www.biorag.org) revealed 
a gene association network consistent with T-cell activation. Nodes 
represent differentially expressed genes, orange and green nodes 
indicate upregulated and downregulated genes, respectively, in SLE 
patients compared with controls. Edges indicate annotated associations 
between genes, with the thickness of the edge indicating the number 
of annotated associations. (B) Gene set enrichment analysis found no 
evidence for this network in peripheral blood mononuclear cell (PBMC) 
samples from SLE patients. (C) Microarray-based expression levels 
of LAT and STAT1 are highly correlated. (D) BNIP3L and CFLAR, but 
not BCL2 or BCL2L1, are differentially expressed in CD4 samples from 
SLE patients compared with controls. Horizontal bars denote means, 
statistical signifi cance was determined using a t test.

Figure 4 Monocyte gene expression data clearly differentiates 
patients with systemic lupus erythematosus (SLE) and antineutrophil 
cytoplasmic antibody-associated small-vessel vasculitis (AAV) from 
each other and from normal controls. Hierarchical clustering of 13 
SLE patients, 44 AAV patients and 25 normal controls using data from 
genes expressed in CD14 monocytes separates the samples into 
the three diagnostic groups (compared with Figure 1A). Hierarchical 
clustering was performed using the Pearson correlation coeffi cient as 
distance metric and average-linkage clustering. The vertical blue bar 
denotes interferon-inducible genes.
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a disease-related signature providing insight into pathogenesis 
that is only seen in purifi ed cells.

Fundamental to the generation of expression-based 
 diagnostic biomarkers is accurate clustering of patients by 
diagnosis. Expression data from unseparated cells is very poor 
at  differentiating SLE and AAV. However, data from purifi ed 
cells result in signifi cantly improved discrimination, presum-
ably because the differentially expressed genes refl ect genuine 
 differences in  processes underlying disease pathogenesis rather 
than simply differences in relative cell proportion. It has long 
been hoped that microarrays would yield diagnostic tests in 
autoimmunity; our data suggest that the analysis of purifi ed cell 
populations is a superior way to achieve this.

While array analysis of PBMC provides some useful 
 information, the use of purifi ed cell subsets identifi es many more 
differentially expressed disease-specifi c genes. Such  analysis 
promises to provide substantial advantages in the search for 
diagnostic and prognostic biomarkers in autoimmune disease.
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