PD-0200347, AN $\alpha_2\delta$ LIGAND OF VOLTAGE-DEPENDENT CALCIUM CHANNEL, INHIBITS IN VIVO THE ACTIVATION OF THE ERK1/2 PATHWAY IN OSTEOARTHRITIC CHONDROCYTES: A PKCα-DEPENDENT EFFECT

Christelle Boileau, PhD,1 Johanne Martel-Pelletier, PhD,1 Julie Brunet, PhD,1 Denis Schrier, PhD,2 Craig Flory, PhD,2 Martin Boily, BSc,1 and Jean-Pierre Pelletier, MD1

1Osteoarthritis Research Unit, Notre-Dame Hospital, University of Montreal Hospital Centre, Montreal, Quebec, Canada, H2L 4M1. 2Pfizer Global Research and Development, Ann Arbor, MI 48105 USA.

This study was supported by grants from Pfizer Global Research and Development, Ann Arbor, MI, USA and Groupe de Recherche des Maladies Rhumatismales du Québec, Montreal, Quebec, Canada.

Direct correspondence and reprint requests to: Jean-Pierre Pelletier, MD, Osteoarthritis Research Unit, Notre-Dame Hospital, University of Montreal Hospital Centre, 1560 Sherbrooke Street East, Montreal, Quebec, Canada, H2L 4M1. E-mail: dr@jppelletier.ca.

Keywords: chondrocytes, osteoarthritis, calcium channels, PD-0200347, PKC
ABSTRACT
The objective of this study was to explore the in vivo effects of PD-0200347, an α2δ ligand of voltage-activated Ca2+ channels, on cell signalling in osteoarthritic (OA) chondrocytes from an experimental dog model. The effect of PD-0200347 on the major signalling pathways involved in OA cartilage degradation was examined.
Osteoarthritis was surgically induced in dogs by sectioning the anterior cruciate ligament (ACL). Osteoarthritic dogs were divided into 3 groups and treated orally with 1) placebo, 2) 15 mg/kg/day of PD-0200347, or 3) 90 mg/kg/day of PD-0200347. The animals were sacrificed 12 weeks after surgery. Cartilage specimens from femoral condyles and tibial plateaus were processed for immunohistochemistry. Specific antibodies against the phosphorylated form of PKCα, Ras, c-Raf, the MAP kinases Erk1/2, p38, JNK, and the transcription factors, CREB, and Elk-1 were used.
The levels of all the tested signalling mediators were increased in the placebo-treated (OA) group compared to the normal group. PD-0200347 treatment significantly reduced the levels of the active forms of PKCα, c-Raf, Erk1/2, and Elk-1; however, the levels of the active forms of Ras, JNK, p38, and CREB were not affected by the PD-0200347 treatment.
This study demonstrated that the action of PD-0200347 on OA chondrocytes is likely mediated through the inhibition of Erk1/2 activation via a Ras-independent mechanism. This effect is associated with the reduction of the activation of transcription factors such as Elk-1, which leads to the inhibition of the induction of the major catabolic factors involved in the degradation process of OA cartilage.
INTRODUCTION
Gabapentin, an anticonvulsant, and pregabalin have been successfully used for relieving spontaneous and paroxysmal pain in patients with neuropathy and other diseases. Gabapentin is also effective in animal models of pain, including the hyperalgesia associated with knee joint inflammation. The mechanisms responsible for the analgesic activity of gabapentin and pregabalin have been the subject of numerous studies. Although gabapentin is a structural analogue of γ-aminobutyric acid (GABA), it does not interact with either GABA_A or GABA_B receptors. On the other hand, it was found to alter the non-synaptic release of GABA in brain tissues in vitro. Both drugs bind with high affinity to the α_2δ subunit of voltage-activated Ca^2+ channels, and can inhibit both the neuronal influx of calcium and the release of monoamines and glutamate. Voltage-gated channels are multisubunit complexes found not only in the central nervous system, but also in peripheral tissues such as cartilage. These channels consist of the voltage sensing α1-pore-forming subunit and the modulating accessory subunit, i.e. α_2δ, β and δ. Voltage-dependent calcium influx could lead to the activation of critical intracellular signal pathways including the activation of PKC. This factor has been demonstrated to act on the regulation of MMP expression by PKC. In neurons, the effectiveness of gabapentin’s action is correlated with the increase in the level of protein kinase C (PKC) activity.

Many studies have tried to elucidate the role of ions, especially Ca^2+, in chondrocyte biology and in OA because their modulation could raise new treatment concepts for this disease. It has been demonstrated that Ca^2+ and Ca^2+ channels play a role in chondrocyte metabolism and more particularly in major cell functions such as replication and matrix formation. An increase of intracellular Ca^2+ was demonstrated following different stress conditions applied to chondrocytes. This means that variations of intracellular Ca^2+ concentration could lead to the modification of cartilage formation. Of note, Ca^2+ was demonstrated to be involved in the regulation of the synthesis of catabolic factors such as iNOS and MMPs.

PD-0200347 is a compound related to the gabapentin and pregabalin families. We demonstrated in a previous study, the potency of this compound in reducing the progression of experimental osteoarthritis (OA) in dogs. We showed that PD-0200347 treatment was able to inhibit the expression and synthesis of major OA catabolic factors, i.e. the inducible form of nitric oxide synthase (iNOS) and matrix metalloproteases (MMP)-1, -3, and -13. This inhibitory effect would explain the ability of PD-0200347 to reduce the progression of experimental OA cartilage lesions.

The factors responsible for the appearance and progression of structural changes in OA have been the subject of intensive research in the last few decades. Significant progress has been made in understanding the pathophysiological pathways responsible for some of these changes; however, much remains to be done to establish a therapeutic intervention that can effectively decelerate or arrest the progression of the disease.

Among the different intracellular signalling pathways occurring in articular chondrocytes, the MAP kinase pathways are of importance. They include the extracellular signal-regulated protein kinase (Erk1/2), the c-jun N-terminal kinases or stress activated protein kinases (JNK/SAPK), and the p38 kinases. They have been extensively described as well as shown to be implicated in the cellular responses of chondrocytes, especially during OA processes. More particularly, they were shown to be involved in the induction of the transcription of OA major catabolic factors such as MMPs. These cell signalling pathways act downstream of the activation of PKC.
The goal of this study was to document the mechanism of action of PD-0200347 on chondrocytes in experimental dog OA. We studied the effect of PD-0200347 on the major signalling pathway intermediaries, PKC\(_\alpha\), Ras, c-Raf, the MAP kinases Erk1/2, p38, JNK, and the transcription factors, CREB and Elk-1.

MATERIALS AND METHODS

Experimental groups

Specimens were obtained from the experimental groups that had been included in a previous study. Twenty-six adult crossbred dogs (2-3 years old), each weighing 20-25 kg, were used in this study. They included five normal dogs that were used as controls and sacrificed at the same time as the OA dogs. The surgical sectioning of the anterior cruciate ligament (ACL) of the right knee through a stab wound was performed on 21 dogs, as previously described. Prior to surgery, the animals were intravenously anaesthetized with pentobarbital sodium (25 mg/kg) and then intubated. Following surgery, the dogs were kept at a housing farm where they could exercise ad libitum in a large pen.

The OA dogs were randomly divided into three treatment groups. Group 1 (n=7 dogs) consisted of dogs that received a placebo (encapsulated methylcellulose); Groups 2 and 3 (n=7 dogs per group) received encapsulated PD-0200347 at a total dose of 15 or 90 mg/kg/day, respectively, beginning the day after surgery. Dogs receiving PD-0200347 were dosed three times per day (at 6 hour intervals) with either 5 or 30 mg/kg throughout the duration of the study. Animal care personnel were blinded to the treatment groups. All dogs were sacrificed 12 weeks after surgery. The study protocol was approved by the Clinical Research Ethics Committee at the Notre-Dame Hospital of the University of Montreal Hospital Center.

Immunohistochemistry

Cartilage specimens (n=4-5) were processed for immunohistochemical analysis, as previously described. Specimens were fixed in TissuFix #2 for 24 hours and then embedded in paraffin. Sections (5 \(\mu\)m) of paraffin-embedded specimens were placed on Superfrost Plus slides (Fisher Scientific, Nepean, Ontario, Canada), deparaffinized in toluene, rehydrated in a reverse graded series of ethanol, and either preincubated with chondroitinase ABC 0.25 units/ml (Sigma-Aldrich Canada, Oakville, Ontario, Canada) in phosphate buffered saline pH 8.0 (PBS) for 60 minutes at 37°C (for all tested antibodies except anti-Erk1/2) or heated in citrate buffer 10 mM pH 6.0 at 68°C for 20 minutes (anti-Erk1/2). The specimens were subsequently washed in PBS, incubated in 0.3% Triton X-100 for 20 minutes, and then placed in 3% hydrogen peroxide/PBS for 15 minutes. Slides were further incubated with a blocking serum (Vectastain ABC kit; Vector Laboratories, Inc., Burlingame, CA) for 60 minutes, after which they were blotted and then overlaid with the primary antibody against the phosphorylated (activated) form of PKC\(_\alpha\) (dilution 1/75, Santa Cruz Biotechnology Inc., Santa Cruz, CA), Ras (dilution 1/10, Cell Signaling, Beverly, MA), c-Raf (dilution 1/20, Biosource, Nivelles, Belgium), Erk1/2 (dilution 1/25, Cell Signaling), p38 (dilution 1/25, Biosource), JNK (dilution 1/25, Santa Cruz), CREB (dilution 1/25, Santa Cruz), and Elk-1 (dilution 1/10, Cell Signaling) for 18 hours at 4°C in a humidified chamber.

Each slide was washed 3 times in PBS (pH 7.4) and stained using the avidin-biotin complex method (Vectastain ABC kit), which entails incubation in the presence of the biotin-conjugated secondary antibody for 45 minutes at room temperature, followed by the addition of the avidin-biotin-peroxidase complex for 45 minutes. All incubations were carried out in a humidified chamber at room temperature and the colour was developed with 3,3’-diaminobenzidine (DAB,
DAKO Diagnostics Canada Inc., Mississauga, Ontario, Canada) containing hydrogen peroxide. Slides were counterstained with eosin.

To determine the specificity of staining, two control procedures were employed according to the same experimental protocol: 1) omission of the primary antibody, and 2) substitution of the primary antibody with an autologous preimmune serum. Controls showed only background staining.

Several sections were made from each block of cartilage, and slides from each specimen were processed for immunohistochemical analysis. Each section was examined under a light microscope (Leitz Orthoplan; Leica Inc., St. Laurent, Quebec, Canada) and photographed with a CoolSNAP cf Photometrics camera (Roper Scientific, Rochester, NY).

Morphometric analysis

The presence of the different antigens in the cartilage was quantified using our previously published method and estimated by determining the number of chondrocytes that stained positive in the entire thickness of cartilage. Three sections from each femoral condyle and tibial plateau were examined and each one was separately scored. The resulting data were integrated as a mean for each specimen. The cartilage was divided into 6 microscopic fields (3 in the superficial zone and 3 in the deep zone) (X 40; Leica Inc.), and the results were averaged. Prior to evaluation, it was ensured that an intact cartilage for each arthritic specimen surface could be detected and used as a marker for the validation of the morphometric analysis. The superficial zone of cartilage corresponds to the superficial and the upper intermediate layers, and the deep zone to the lower intermediate and the deep layers. The total number of chondrocytes and those staining positive for the specific antigen were determined. The final results were expressed as the percentage of chondrocytes staining positive for the antigen (cell score) with the maximum score being 100%. Each slide was subjected to two independent readers who were blinded to the treatment groups. The final score was a consensus between the two readers. For the purpose of statistical analysis, the data obtained from the medial and lateral femoral condyles and tibial plateaus were considered together. The staining in the deep zone of cartilage was negligible for each of the studied antibodies; therefore, the data presented are from the superficial zone of cartilage.

Statistical analysis

The values in brackets are expressed as the median and the range. Statistical analysis was performed using the Mann-Whitney U test. P values less than 0.05 were considered significant.

RESULTS

Levels of PKCα, Ras and c-Raf

The phosphorylated (activated) form of PKCα, Ras, and c-Raf were significantly increased in the OA group compared to the normal group (P<0.02, P<0.03, and P<0.01, respectively; Figures 1 and 2, Table 1). Treatment with PD-0200347 significantly decreased activation of PKCα (P<0.01 for both tested doses) and c-Raf (P<0.01 for both tested doses) in a dose-dependent fashion (Figures 1 and 2) but did not decrease activation of Ras (Table 1).

Levels of MAP kinases: Erk1/2, p38, and JNK

The effect of PD-0200347 on the activation levels of three MAP kinase signalling pathways, namely p38, JNK, and Erk1/2, was analysed. The phosphorylated (activated) forms of p38, JNK, and Erk1/2 were found to be increased in the OA group compared to the normal group (P<0.03, P<0.03 and P<0.01, respectively; Table 1, Figure 3). The highest tested dose of PD-0200347 (90 mg/kg/day) significantly reduced Erk1/2 activation (P<0.01). The treatment was found to be ineffective with regards to both p38 and JNK activation (Table 1).
Levels of transcription factors: CREB and Elk-1

The levels of the active forms of the transcription factors, CREB and Elk-1 were found to be increased in the OA group compared to the normal group (P<0.01 and P<0.03, respectively; Figure 4, Table 1). PD-0200347 treatment induced a significant reduction in the activation of the Elk-1 transcription factor at both doses (P<0.03, 15 mg/kg/day and P<0.02, 90 mg/kg/day). However, PD-0200347 treatment had no effect on CREB activation (Table 1).

DISCUSSION

The present study explored the mechanism of action of the in vivo effect of PD-0200347 on chondrocytes in experimental dog OA. Emerging data demonstrate that PD-0200347 inhibited the activation of PKCα and subsequently the MAP kinase Erk1/2 through a Ras-independent mechanism. The downstream inhibition of major transcription factors, such as Elk-1, could provide an explanation for the disease modifying OA drug (DMOAD) effect of PD-0200347 treatment in experimental dog OA. We demonstrated here that PD-0200347 inhibits the PKCα/c-Raf/Erk1/2/Elk-1 signalling pathway.

We previously showed 25 that PD-0200347 treatment with dosages within the therapeutic range reduced the progression of experimental OA in dogs by inhibiting the synthesis of several major catabolic factors, iNOS and MMP-1, -3, and -13, in cartilage from the lesional areas in the weight bearing zones of the OA knee. Since these catabolic factors have been previously demonstrated to be preferentially increased in cartilage from lesional areas 25, it was therefore also relevant to explore the effects of the treatment on the cell signalling pathways in these areas of interest. However, since no significant staining was detected in any specimens with the studied proteins in the deep zone (data not shown), only the results obtained from the superficial zone are presented.

PKCα, an important signalling pathway in OA pathophysiology, has already been demonstrated to be implicated in the gabapentin effect 14 41. The link between each of the intermediaries, PKC, Raf and Erk1/2, has been well-documented 42, and PKC and Erk1/2 pathways in chondrocytes have been specifically described 34. PKC has been demonstrated as acting either upstream or on the transcription factors AP-1 and NF-κB 43. Both these pathways are involved in the regulation of MMP expression 44-47. Moreover, PKCα and PKCζ have recently been demonstrated to be involved in the regulation of MMP-1 and MMP-3 syntheses 48. Altogether, these studies strongly support the role played by PKC in the upregulation of MMP expression and synthesis. c-Raf, also known as Raf-1, is a member of the serine/threonine-specific kinases and found to be involved in the activation of major cellular signalling pathways, such as the activation of Erk1/2. The present study suggests that PD-0200347 inhibition of c-Raf activation is independent of the Ras pathway, which is in contrast to the generalisation that c-Raf activation is dependent of Ras activation. However, it concurs with recent data that demonstrated in erythropoietin responsive cell lines that c-Raf is activated independently of Ras 49. Interestingly in the same study 49, the transcription factor Elk-1 was shown to act downstream of Erk1/2, again concurrent with our results.

Although not completely elucidated, the pharmacological properties of PD-0200347 are mainly associated with its specific binding to the voltage-dependent Ca2+ channel. Consequently, it was hypothesized (Figure 5) that the effects of PD-0200347 on the activation of PKCα and Erk1/2 pathways in OA chondrocytes occur through the binding of the drug to the α2δ subunit of voltage-dependent Ca2+ channels. This is possible as gabapentin has been demonstrated to bind to the Ca2+ channels 8 with a significant reduction of the current amplitude of Ca2+ in vitro in neurons and muscles in culture 31 50 51, and in vivo in animal models of neuropathic pain 52. A
voltage-dependent calcium influx could lead to the activation of critical intracellular signal pathways, including PKC. One must, however, exert caution in coming to any firm conclusions at this time about the mode of action of PD-0200347 on OA pathophysiological pathways. The effect of the drug should be analysed in the context of a chronic treatment, which may influence several of the pathways that may, on their own, impact on the intracellular signalling pathways. For instance, the structural protective effect of the drug in the dog ACL model, which was used in this study may very well have downregulated the synthesis of a number of catabolic factors, which also may have contributed indirectly to the effect of the drug found on the signalling pathways. Additional experiments are currently underway in our laboratory to explore and confirm these hypotheses.

Alternative hypotheses to the action of GBP on OA chondrocytes could also be put forward, such as the inhibition of signalling pathways via alternate or unidentified mechanisms of action. Such hypotheses could include the ability of the drug to inhibit the activation of cell signalling pathways through other mechanism(s), which may not be exclusive of the first one proposed. For instance, studies have demonstrated that stimulation of cells with Ca$^{2+}$ ionophores initiates the generation of nitric oxide (NO) and reactive oxygen species (ROS) 21, which are known to be capable of inducing PKC and ERK1/2 activation $^{53-55}$. Since chondrocytes can overproduce NO and ROS $^{56-59}$, this situation could possibly apply to OA and it could therefore be possible to believe that treatment with PD-0200347 has induced an inhibition of NO and ROS production, which could have also contributed to the inhibition of the cell signalling. Moreover, the recent demonstration that Diltiazem, a Ca$^{2+}$ channel antagonist, could block the synthesis of MMP-1 in smooth muscle cells by a mechanism independent of c-jun/AP-1 expression 24 is bringing one more additional hypothesis to the potential mode of action of PD-0200347.

CONCLUSIONS

This study provides new insights into some of the possible mechanisms of the action of PD-0200347 on the reduction of the development of experimental OA lesions. This drug inhibits one of the major signalling pathways, the PKCα, and the Ras-independent Erk1/2 activation, which could be implicated in the induction of major catabolic factors. Other effects that occur through an effect on Ca$^{2+}$ channels, yet remain unidentified at this time, may also possibly explain the actual findings.
ACKNOWLEDGEMENTS
We would like to thank François Mineau, BSc, for his exceptional technical support, as well as Santa Fiori and Martha Evans for their invaluable assistance in the preparation of this manuscript.

DECLARATION OF COMPETING INTERESTS
Denis Schrier and Craig Flory are employees of Pfizer Global Research and Development. Jean-Pierre Pelletier and Johanne Martel-Pelletier are consultants for Pfizer Global Research and Development.

COPYRIGHT
The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in the Annals of the Rheumatic Diseases editions and any other BMJPGL products to exploit all subsidiary rights, as set out in your licence: (http://ard.bmjournals.com/misc/ifora/licenceform.shtml).
REFERENCES

55. **Tao Q**, Spring SC, Terman BI. Comparison of the signaling mechanisms by which VEGF, H2O2, and phosphatase inhibitors activate endothelial cell ERK1/2 MAP-kinase. *Microvasc Res.* 2005; **69**:36-44.

FIGURE LEGENDS

Figure 1: Phospho-PKCα detection by immunohistochemistry. A) Morphometric analysis of phospho-PKCα immunostaining in the superficial zone of cartilage. Data are expressed as median and range and are presented in a box and whisker plot, where the median line corresponds to the 1st and 3rd quartiles and to the median, and the lines outside represent the spread of the values. P values were compared with the placebo-treated (OA) group by the Mann-Whitney U test. B) Representative phospho-PKCα immunohistochemical sections of tibial plateaus (original magnification X 250). No specific staining was detected in the OA cartilage in the control slides (data not shown).

Figure 2: Phospho c-Raf detection by immunohistochemistry. A) and B) are as described in the legend of Figure 1.

Figure 3: Phospho Erk1/2 detection by immunohistochemistry. A) and B) are as described in the legend of Figure 1.

Figure 4: Phospho Elk-1 detection by immunohistochemistry. A) and B) are as described in the legend of Figure 1.

Figure 5: Hypothetical mechanism of action of PD-0200347 on articular chondrocytes during OA process. One mechanism could be a reduced calcium influx in chondrocytes subsequent to PD-0200347 binding to the α2δ protein of the calcium channel. A bold line indicates the effect of gabapentin or PD-0200347, and -l indicates inhibition. PKC=protein kinase C, c-Raf; Erk1/2=extracellular regulated kinase 1/2; Elk-1=transcription factor; OA=osteoarthritis.
Table 1: Morphometric analysis of immunostaining for phospho-Ras, -JNK, -p38, and -CREB. Phospho-Ras, -JNK, -p38, and -CREB syntheses were detected in normal, placebo, and PD-0200347 90 mg/kg/day-treated groups. Data are the median (range) of the percentage of positive chondrocytes for the specific antibody (n=4). Data were analysed by the Mann-Whitney U test and P< 0.05 versus the placebo-treated (OA) group was considered significant.

<table>
<thead>
<tr>
<th></th>
<th>Ras</th>
<th>p38</th>
<th>JNK</th>
<th>CREB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>7.0 [5.3-7.8]</td>
<td>6.5 [5.4-8.2]</td>
<td>7.3 [5.7-9.0]</td>
<td>6.2 [4.7-9.6]</td>
</tr>
<tr>
<td></td>
<td>*P<0.03</td>
<td>*P<0.03</td>
<td>*P<0.03</td>
<td>*P<0.03</td>
</tr>
</tbody>
</table>
Boileau et al, Figure 1
A

![Bar chart showing percentage of positive chondrocytes.](chart)

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>OA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-0200347 15 mg/kg/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD-0200347 90 mg/kg/day</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

![Images comparing normal and osteoarthritic tissue samples.](images)

- Normal
- Osteoarthritic

PD-0200347 15 mg/kg/day

PD-0200347 90 mg/kg/day

Boileau et al, Figure 2
Boileau et al, Figure 3
A

% of positive chondrocytes

Normal OA 15 mg 90 mg

PD-0200347

P < 0.01

P < 0.03

P < 0.02

B

Normal

Osteoarthritic

PD-0200347 15 mg/kg/day

PD-0200347 90 mg/kg/day

Boileau et al, Figure 4
Boileau et al, Figure 5