TITLE SHEET

Title:
Assessment of the clinical significance of gelatinase activity in Juvenile Idiopathic Arthritis patients using quantitative protein substrate zymography.

Authors:
N J Peake
H E Foster
K Khawaja*
T E Cawston
A D Rowan

Institutions:
Musculoskeletal Research Group, School of Clinical Medical Sciences, University of Newcastle-upon-Tyne, UK
* Department of Paediatrics, Newcastle Hospitals NHS Trust, Newcastle-upon-Tyne, UK

Corresponding author:
Dr AD Rowan, Musculoskeletal Research Group, School of Clinical Medical Sciences, Medical School Cookson Building, University of Newcastle upon Tyne, NE2 4HH, UK. Telephone: 0191 222 8821. Fax: 0191 222 5455. Email: a.d.rowan@ncl.ac.uk

Keywords:
Gelatinase
Matrix Metalloproteinase
Zymogram
Juvenile Idiopathic Arthritis
Cartilage
ABSTRACT

Objective
To measure gelatinase activities in paired synovial fluid (SF) and serum of patients with Juvenile Idiopathic Arthritis (JIA), and to assess how these activities relate to clinical and laboratory parameters of disease activity.

Methods
A quantitative protein substrate zymography method was adapted and validated for use with serum and SF. Bands of activity were quantitated by densitometry and correlated to standard laboratory indicators of inflammation; erythrocyte sedimentation rate and platelet count.

Results
Gelatinase activity was found consistently in JIA patients, with reproducible, quantified bands of activity corresponding to pro-matrix metalloproteinase-9 (pro-MMP-9) including the neutrophil-associated lipocalin complex, and pro- and active forms of MMP-2. Both active MMP-2 and pro-MMP-9 were higher in JIA serum compared to controls, though no differences were observed between patients grouped according to age, disease duration or JIA sub-type. However, SF MMP-9 correlated significantly with the laboratory indicators of inflammation, as did the relative level of active MMP-2.

Conclusions
Both MMP-2 and MMP-9 gelatinolytic activities can be found elevated during active JIA and associate with inflammatory activity regardless of age and disease duration, supporting a role for MMPs in the breakdown of joint components from early in disease. These MMPs may be specific markers of active joint destruction linked to inflammatory JIA, MMP-9 as a product of infiltrating cells, and the activation of MMP-2 produced within the joint.

ABBREVIATIONS

JIA, Juvenile Idiopathic Arthritis; SF, synovial fluid; MMP, matrix metalloproteinase; ESR, erythrocyte sedimentation rate; PLT, platelet count; FRH, Freeman Hospital; ILAR, International League Against Rheumatism; NSAID, non-steroidal anti-inflammatory drug; DMARD, disease-modifying anti-rheumatic drug.

DECLARATION
The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article to be published in ARD editions and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence (http://ard.bmjournals.com/misc/ifora/licenceform.shtml).
INTRODUCTION

The matrix metalloproteinases (MMPs) are a family of neutral zinc-dependant endopeptidases currently consisting of 23 members in humans [1], and are heavily implicated in the joint breakdown seen as a consequence of chronic arthritic disease. They are collectively capable of degrading most components of cartilage and are upregulated by pro-inflammatory cytokines present in the joint compartment during chronic inflammation [2]. They can be detected in synovial fluid (SF) and immunolocalised to the synovial membrane and cartilage from diseased joints [3, 4], and are produced as inactivezymogens which are activated in physiological conditions by a cascade of proteolytic reactions resulting in cleavage of a 10kD pro-region of the enzyme [5].

Protein substrate zymography is a useful technique for the sensitive detection of MMPs, and has been successfully employed in the identification of enzyme activity in the SF of arthritic joints in both humans and animals [6, 7]. Gelatin zymography can discriminate MMP-2 (gelatinase A) and MMP-9 (gelatinase B) in both pro- and active-forms without interference from specific and non-specific inhibitors present in human serum (and SF) because of size-dependant separation through an acrylamide gel. The pro-forms of MMPs are activated following the denaturation/renaturation that occurs in the assay through treatment with SDS [5]. MMP-2 is found at a molecular weight of 72kD in its pro-form, and 66kD in the active form. It is of considerable relevance to chronic arthritic disease because it has been shown to have weak activity against type II collagen, as well as efficient activity against denatured collagen (gelatin) and other substrates of the cartilage matrix [8]. Denaturation and degradation of type II collagen are considered to be key events in irreversible joint damage, where the triple helical collagen molecule is cleaved across all three polypeptide chains [9]. By contrast, the larger MMP-9 protein has a molecular weight of 94kD in the pro-form, and 82kD in the active form. However, MMP-9 isolated from neutrophils appears to separate into three bands of activity [10], corresponding to the monomeric pro-form, a high molecular weight (>180kD) dimeric pro-form [11], and a 110kD complex associated with the lipocalin protein, which may have a role in activation of MMPs [12].

The term Juvenile Idiopathic Arthritis (JIA) covers a heterogeneous group of diseases with an age of onset under 16, with variable outcome and response to therapy. The Durban classification, refined in 2004 [13], identifies 7 clinically distinct sub-groups of JIA. The more common sub-types are defined according to the number of joints involved within the first six months. Polyarticular patients, who can be rheumatoid factor positive or negative, have involvement of more than four joints within six months, whereas oligoarticular patients have four or less. However, 50% of oligoarticular patients develop an extended phenotype, progressing to involve more than four joints after the six months. The remaining sub-types, systemic, enthesitis-related and psoriatic-related JIA, are diagnosed according to extra-articular manifestations. At present, the cause of JIA and its heterogeneity are unknown, and it therefore remains a diagnosis of exclusion. Long-term outcome studies have shown that, contrary to early reports, many patients suffer active disease and considerable morbidity into adulthood [14], and recent radiographic studies indicate that joint damage is thought to occur earlier than previously believed [15].

Little direct data exist on the activity of proteinases during active JIA despite the radiographic evidence of early damage, and the potential effects of disease in developing cartilage which is structurally distinct from older tissue [16, 17]. MMP-3
(stromelysin-1) has been measured in JIA SF [18], and is present at very high levels. Stromelysins have a broad substrate range, and are implicated in proteoglycan breakdown [19] and activation of other MMPs [20, 21]. MMP-3 appears to diffuse from the joint into serum where it is also measurable [22], and correlates significantly with disease activity. Perhaps importantly, in a co-culture model of osteoarthritic articular cartilage chondrocytes and macrophages, MMP-9 was produced by macrophages and activated by MMP-3 produced by the chondrocytes in response to macrophage infiltration [23]. However, there is also evidence that MMP-9 is produced by chondrocytes and fibroblasts within the joint during disease [24, 25].

Protein substrate zymogram techniques have been shown to be quantifiable and reproducible for assaying the SF of osteoarthritis patients, and gelatinase activity appeared to reflect the degree of erosive damage in these patients [26]. The aim of this study was to investigate gelatinases in paired JIA serum and SF samples using a zymography technique capable of discriminating pro- and active-MMPs on the basis of size, and to investigate whether their presence and activation was associated with inflammatory activity using standard laboratory and clinical measures of disease. We hypothesised that the presence of MMPs linked to inflammation from an early point in disease could contribute towards the early joint damage observed in JIA, and therefore utilised a patient population inclusive of young patients with a recent diagnosis through to adults with decades of active disease.
MATERIALS AND METHODS

Patients and samples.
The study was performed on JIA patients who donated paired serum and SF between 1996 and 2003 to a sample bank at the Freeman hospital (FRH), Newcastle upon Tyne. This included patients with early-onset disease up to adults with disease of several decades tracked through the FRH transitional services. Parental or patient consent was obtained, and sample collection performed under appropriate ethical guidelines. A total of 51 patients were selected, all diagnosed using the International League Against Rheumatism (ILAR) criteria [13], of whom 31 (61%) were female. The ILAR sub-type of the patients was recorded as polyarticular JIA (n = 10), or oligoarticular JIA (n = 41) of which 11 patients had extended disease. Sera and SF were obtained at the time of routine joint aspiration procedures, and centrifuged at 1300g; 10mins for serum, and 30mins for SF. The supernatants were aliquotted and stored at -80˚C until use. A total of 82 paired SF and sera were available from the patients selected. Retrospective analysis of patient notes was performed to obtain the routine laboratory data used to monitor the level of inflammation and response to therapy at the time of sampling where available. Erythrocyte sedimentation rate (ESR) and blood platelet count (PLT) were recorded (for 72 (88%) and 63 (77%) sample points, respectively), along with basic clinical data; age of onset, disease duration and age at study entry. Medication details were also recorded at these sample points (non-steroidal anti-inflammatory drugs (NSAIDs), disease modifying anti-rheumatic drugs (DMARDs) or steroid therapy) in order to assess the impact of treatment on gelatinase levels. For controls, healthy laboratory volunteers and children admitted for non-inflammatory conditions were recruited for blood donation with ethical approval (n = 13). The mean age at sampling was 26 years (range 9 - 37), of whom 6 (55%) were female. Blood was collected in Vacuette EDTA tubes (for plasma), then half removed into Vacuette serum tubes with clot activator (Greiner Bio-One, Gloucestershire, UK). Both bloods were then centrifuged at 1300g for 10mins and the supernatant removed and stored at -80˚C until analysis.

Zymogram method.
Zymography was performed by co-polymerising gelatin (BDH Chemical Co., Poole, UK) at a final concentration of 1mg/mL in a 0.75mm thick 7.5% acrylamide gel using Mini-protean II equipment (Bio-Rad Laboratories, Hertfordshire, UK) with a 4.5% acrylamide stacking gel. Samples (1µL) were diluted 10-fold in loading buffer (4% glycerol, 1% (w/v) SDS and 0.125% (w/v) bromophenol blue in 0.125M Tris-HCl, pH 6.8). SeeBlue molecular weight ladder (Invitrogen Ltd., Paisley, UK) was used to enable size determination of the activity bands. Electrophoresis was performed at 200V/40mA per gel in 25mM Tris, 0.2M glycine, 1% (w/v) SDS running buffer, pH 8.2, until the tracking dye reached the bottom of the gel. Gels were then transferred to a 100mm square Petri dish, rinsed in H2O, then washed twice with 50mL 2.5% (v/v) Triton X-100 (Sigma Chemical Co., Poole, UK) in 20mM Tris-HCl, pH 7.8, with agitation at room temperature (30mins per wash). The gels were finally rinsed three times in H2O, and then incubated for 20h in 50mL of 1% (v/v) Triton X-100 in 20mM Tris-HCl, pH 7.8, at 37˚C.

Quantitation.
Following incubation, the gels were rinsed with dH2O and then stained with 2.5% (w/v) coomassie R-250 (Sigma) in 40% (v/v) methanol, 10% (v/v) acetic acid for 1h.
at room temperature with agitation. The gels were then destained in 40% (v/v) methanol, 10% (v/v) acetic acid for 30min, and bands of activity visualized as clear lysis zones on a blue background using a Chemigenious bioimaging system and GeneSnap gel documentation software (SynGene Ltd., Cambridge, UK). The images were then quantified at the same magnification using ImageMaster® 1D software (Amersham Biosciences, Buckinghamshire, UK), and recorded as pixel density based on band intensity and size following rolling-disc background subtraction. The arbitrary densitometry units were defined by calibrating to a standard curve prepared from human purified recombinant MMP-2 kindly donated by Professor Gill Murphy (Department of Oncology, Cambridge Institute for Health Research, University of Cambridge, UK). In some experiments, the metalloproteinase inhibitor 1,10-phenanthroline (Sigma) was used at 2mM final concentration in the incubation buffer in order to confirm that activities were due to metalloproteinases.

Statistical analysis.
Statistical analysis of the quantitated activities was performed by Spearman’s rank correlation of continuous variables, and by Mann-Whitney test for group comparisons when analyzing 2 groups, and Kruskall-Wallis test (with Dunn’s post-hoc test) for comparisons of more than 2 groups. Where multiple samples were available for a patient, mean values were used in statistical analysis to ensure independence of the data points.
RESULTS

Patients and activity.
The clinical characteristics of the patients involved in the study are shown in table 1, split into the separate JIA subtypes diagnosed. No significant differences were seen between subtypes for the clinical variables age of onset, disease duration or age at sample time. Neither were differences seen between the laboratory indicators of inflammation, ESR and PLT. Of the 82 samples obtained from the patients, 54 were taken during NSAID therapy, 19 during corticosteroid treatment (iv or oral), 28 during methotrexate treatment and 3 during etanercept treatment.

Table 1. Clinical characteristics of the JIA patients studied.
The clinical characteristics for the separate JIA subtypes, and the laboratory indicators of inflammation studied, ESR and platelet count (PLT). Data are presented as the mean value (range). No significant differences were observed between subtypes for any of the variables studied.

<table>
<thead>
<tr>
<th></th>
<th>Persistent oligoarthritis</th>
<th>Extended oligoarthritis</th>
<th>Polyarticular</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>30</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Age of onset (years)</td>
<td>7 (1 – 16)</td>
<td>8 (1 – 16)</td>
<td>8 (1 – 16)</td>
</tr>
<tr>
<td>Disease duration at study entry (years)</td>
<td>9 (1 – 27)</td>
<td>6 (1 – 30)</td>
<td>8 (1 – 28)</td>
</tr>
<tr>
<td>Age at study entry (years)</td>
<td>16 (4 – 34)</td>
<td>14 (2 – 36)</td>
<td>16 (5 – 33)</td>
</tr>
<tr>
<td>Mean ESR (mm/h)</td>
<td>28 (2 – 55)</td>
<td>16 (1 – 79)</td>
<td>26 (2 – 83)</td>
</tr>
<tr>
<td>Mean PLT (x10^9 cells / L)</td>
<td>388 (216 – 599)</td>
<td>317 (191 – 448)</td>
<td>414 (294 – 636)</td>
</tr>
</tbody>
</table>

Zymography validation.
The gelatin zymography yielded five distinct gelatinase activities present in both SF and serum samples (figure 1A). Gelatinase activities at 250kD, 110kD and 95kD correspond to the molecular weights of neutrophil pro-MMP-9, and activity at 70kD and 65kD correspond to the molecular weights of pro- and active MMP-2, respectively [10]. The class of these enzymes was confirmed by the use of a metalloproteinase inhibitor, 1,10-phenanthroline, which completely abolished these activities (data not shown). A standard curve generated from a positive control of human recombinant MMP-2 was also run on the zymogram (figure 1B). The pixel density corresponding to the middle of this curve, 1064147 pixels, was used to calibrate the sample values. The resulting arbitrary units (AU), standardized to 0.5ng MMP-2, are used from herein.
The reproducibility of the quantitative zymography was confirmed by running test samples on different days using fresh reagents. Total pro-MMP-9 was calculated by summing the 250kD, 110kD and 95kD activities, and total MMP-2 by summing the 70kD and 65kD activities. Reproducible sample dilution curves are demonstrated for total MMP-2 and total pro-MMP-9 in figure 1C. The intra-assay variability of the technique was determined by running duplicate samples (10 duplicates, run in two independent experiments), and the coefficients of variation for the duplicates were 8 – 14% (mean 11.2%). Inter-assay variation was calculated from 6 samples repeated in 4 independent experiments, and the coefficients of variation were 5.7 – 16.4% (mean 9.4%).
Gelatinase activity in JIA patients and control samples.
The JIA samples chosen for analysis were analysed by densitometry of each of the five bands of activity and converted to arbitrary units. Values for each individual band, total MMP-2 and pro-MMP-9, and the ratio of active:pro-MMP-2 were analysed, and were not found to be significantly different between sub-types in either serum or SF. However, it was noted that MMP-2 activity was significantly higher in SF compared to paired sera (p < 0.0001 for both pro- and active forms), and pro-MMP-9 activity significantly higher in serum compared to paired SF (p < 0.0001 for all isoforms, figure 2). We further observed that the 110kD lipocalin-complexed pro-MMP-9 band, and the active MMP-2 band were higher in JIA patient serum compared to control (figure 2). Finally, we also noted that all of the pro-MMP-9 activities and the 70kD pro-MMP-2 activity were higher in control serum compared to paired plasma (figure 2). This was also true for the active:pro-MMP-2 ratio, and indicated that sample collection was an important consideration of the data.
The pro-MMP-9 activities were highly correlated with each other in both SF (r = 0.8 – 0.9, p < 0.0001), and in serum (r = 0.7 – 0.8, p < 0.0001). This would be expected if these isoforms are produced concordantly. In SF, they also correlated less strongly with the MMP-2 gelatinase activities (r = 0.3 – 0.4, p < 0.05), and the pro- and active-MMP-2 forms were found to correlate together in SF (r = 0.3, p < 0.05).

Relationship of gelatinase activity to clinical and laboratory parameters.
The role of gelatinases in JIA was investigated using the clinical and laboratory measures obtained at the time of sampling. No differences were observed in gelatinase activity when patients were grouped by NSAID, DMARD or corticosteroid treatment. Gelatinase activity was not correlated to age of onset, disease duration or age at study entry, and when patients were grouped according to disease duration at study entry, no significant differences were observed (figure 3). The gelatinase data were also correlated with the standard laboratory measures of inflammation in order to investigate whether gelatinase production and activation were linked with the inflammatory process. The 110kD lipocalin-complex and 95kD monomeric isoforms of pro-MMP-9, and active (65kD) MMP-2 in SF significantly correlated with ESR and PLT (MMP-9, figure 4; MMP-2, figure 5A). Furthermore, the ratio of active:pro-MMP-2 also correlated with ESR (figure 5B). Thus, pro-MMP-9 production was linked to inflammation whereas MMP-2 production did not appear to be linked per se; rather, the activation of MMP-2 correlated significantly with inflammatory activity. It is noteworthy that no active MMP-9 was identified in these patients.
DISCUSSION

Although MMP levels have been extensively studied in the adult arthritides [1-4], relatively few studies to date have measured these potent proteinases in JIA. As a childhood onset disease that often persists into adulthood, JIA has severe implications in terms of persistent upregulation of the proteinases capable of degrading cartilage components; significantly, joint damage is now considered to occur earlier than previously thought in JIA [15]. In addition to these unique clinical features, the structure of cartilage at different ages has been shown to differ considerably [16, 17], and the implications for juvenile onset disease and susceptibility to MMP-mediated joint damage are not known. MMP-3 has previously been found to be a good marker of disease activity [18, 22], but there are currently no data available on collagenases or gelatinases in samples from JIA patients. This is the first report of enzymes capable of degrading gelatin (denatured collagen) in JIA, and we describe that MMP-9 and MMP-2 are found in both SF and serum samples using gelatin substrate zymography. Of potential significance, MMP-2 also exhibits weak activity against type II collagen [8], which is considered to be important in irreversible joint damage [27]; indeed, MMP-2 has been found to correlate with collagen loss in soft connective tissue explants, even though the classical collagenases such as MMP-1 did not [28]. We demonstrated that both MMP-2 and MMP-9 were higher in control serum compared to control plasma samples. It has been demonstrated previously that sample collection is an important variable in determination of gelatinases by both ELISA and zymographic techniques [29, 30], as the clotting procedure for sera results in activation of blood platelets and leukocytes, causing the release of MMP-2 and MMP-9. This may partially explain why JIA SF measurements showed significant correlations with laboratory indicators of inflammation, whilst serum measurements did not. MMP-2 is also produced by chondrocytes and fibroblasts [10, 31], which would be likely to contribute to its presence in SF during active inflammatory disease; this would account for the higher levels observed in SF compared to paired serum even with the bias towards higher serum levels caused by sample clotting, given that its production is upregulated by the pro-inflammatory cytokines thought to drive joint destruction [2]. It is notable, however, that we did not observe a correlation of pro-MMP-2 with inflammatory activity as assessed by ESR and PLT, but did see a correlation between active MMP-2 and ESR; and even more significantly, for the ratio between pro- and active MMP-2. These data suggest that it is not increased production of this MMP that is necessarily most closely linked to inflammation (or that increased production occurs at a low inflammatory threshold during active disease), but enzyme activation – which is a necessary step for proteolytic activity. Many MMPs have been found to be produced in adult arthritic joints [4], and activation by other MMPs is a key step in cartilage breakdown [32]. It is therefore clear that the proteolytic processes occurring in this destructive childhood onset disease require further study.

MMP-9 is produced by neutrophils and macrophages, but also by fibroblasts and chondrocytes within the joint, following pro-inflammatory stimuli [24, 25]. We propose, however, that neutrophils produce the majority of MMP-9 during active disease, due to the presence of the 110kD neutrophil-associated lipocalin complex. This isoform correlated highly with the other isoforms, suggesting it is produced along with the monomeric and dimeric latent forms of MMP-9. It is notable that no discernible metalloproteinase activity was found at 82kD, corresponding to active MMP-9, or indeed any activity corresponding to active dimeric MMP-9 which has a
similar gelatinolytic activity but differs in the rate at which it is activated by MMP-3 [11]. The ability of MMP-3 to activate MMP-9 (as well as other MMPs) is interesting as MMP-3 has been found to be present in large amounts in JIA SF. Whilst no active MMP-9 was observed in patient samples, it may be that activation is occurring at specific sites of joint damage mediated by the large concentration of proteolytic activators present.

A weak gelatinase activity was observed in both sera and SF that was not inhibited by 1,10-phenanthroline, at around 80kD (data not shown). In the absence of the MMP bands, this activity appeared to be a non-metalloproteinase triplet. Although the identity of these activities is not known, a similar triplet of gelatinolytic activity has been previously reported in human serum, but not in SF [33]. Blood contamination of SF can be excluded in this study, however, since any contaminated samples are routinely discarded at the FRH clinical laboratory. This activity did not relate to any of the clinical and laboratory criteria during our analyses, and was therefore not studied further.

Casein can also be adapted as a substrate for protein zymography, and we developed a reproducible, quantitative casein zymogram suitable for use with JIA samples. However, many MMPs are caseinolytic and have molecular weights at 50 – 70kD, including MMP-1, -2, -3, -10 and -13. We identified caseinolytic metalloproteinase activities in the 50-70kD range in JIA samples, but were unable to identify the specific MMPs responsible, whether they were pro- or active, or whether they were caused by a single MMP or multiple enzymes. Further work would be useful to develop the zymography method as a means of assessing proteolytic activity in patients using multiple protein substrates.

In conclusion, both the presence of pro-MMP-9 activity and the activation of MMP-2 appeared linked to the level of disease activity in JIA patients, causing raised serum levels compared to controls, and both MMP-2 and MMP-9 activities were found at similar levels regardless of disease duration and age. This is significant, as the presence of enzymes capable of degrading cartilage components such as native and denatured collagen corroborates the concept of joint damage occurring early in JIA. Targeted, aggressive therapy towards poor prognostic disease is now widely advocated, and there is considerable interest in developing anti-MMP therapeutics in the future [34]. Identification of the potential targets of such therapy is an essential step for the application of these principles to juvenile onset disease.
ACKNOWLEDGEMENTS

We thank the Faculty of Medical Sciences, University of Newcastle upon Tyne, for the award of a research studentship to Nick Peake, the Arthritis Research Campaign for the award of a senior clinical lectureship to Helen Foster, the Dunhill Medical Trust and the Anne Coleman Arthritis Fund for essential support for this work. Finally, we would like to thank Dr Simon Kometa of the University of Newcastle Computer Services Statistical Support for his useful input, and Dr Alice Lorenzi for help obtaining control samples.
REFERENCES


FIGURE LEGENDS

Figure 1. Validation of gelatin zymography of JIA SF and serum samples.
(A) The use of quantitative zymography was validated by running test samples, and five distinct gelatinolytic activities were routinely observed in JIA SF and serum samples. The 250kD, 110kD and 95kD activities correspond to neutrophil pro-MMP-9, and the 70kD and 65kD activities to pro- and active MMP-2, respectively. (B) A standard curve was generated from human recombinant MMP-2 across a linear range of 0.05 – 1ng/mL, and the pixel density in the middle of this range (0.5ng/mL) used to calibrate the values obtained by densitometric analysis of the gelatinase activities in patient samples to generate arbitrary units (AU). (C) Running the test samples on different days using fresh reagents confirmed that the assay was a robust, reproducible way of assessing gelatinase activity, and showed clear dilution-factor dependant changes in activity; total MMP-9 and total MMP-2 activity are illustrated for 3 SF and 3 serum samples (mean ± SEM, n = 4). Total MMPs were calculated as in the main text.

Figure 2. Comparison of gelatinase activity in JIA patient sera and SF with normal control serum and plasma.
(A) Plots of the 3 pro-MMP-9 activities at 250kD, 110kD and 95kD. These bands were significantly higher in control serum vs control plasma. Notably, JIA serum showed significantly higher 110kD lipocalin-complexed pro-MMP-9 activity compared to normal serum. SF activity was significantly lower than paired serum activity for the 250kD and 95kD bands. (B) Plots of the pro- and active MMP-2 bands seen at 70kD and 65kD, respectively, and the ratio of active:pro-MMP-2. The pro-MMP-2 activity at 70kD was significantly higher in control serum compared to plasma, and JIA serum levels of pro-MMP-2 were not significantly higher than in control serum. Levels of both pro- and active MMP-2 were significantly higher in JIA SF compared to paired serum, and notably the level of active-MMP-2 was significantly higher in JIA serum compared to control serum. This was also true of the active:pro-MMP-2 ratio, at a greater level of significance (p < 0.0001). Selected statistical comparisons are shown; *, p < 0.05; **, p < 0.01; ***, p < 0.0001, Kruskall-Wallis test (with Dunn’s post-hoc test).

Figure 3. SF Gelatinase activity in JIA patients grouped by disease duration.
Three disease duration groups were defined, 0-2 years (n = 18), 2-6 years (n = 16) and 6 – 29 years (n = 16); no significant differences were observed between groups for MMP-9 (A), MMP-2 (B) or the active:pro-MMP-2 ratio (C). No significant differences were observed either for serum gelatinase activity.

Figure 4. Correlation of MMP-9 gelatinase activities with laboratory measures of inflammation.
ESR and PLT determined at the point of sampling were correlated with the gelatinase activities corresponding to isoforms of pro-MMP-9. Significant Spearman’s Rank correlation values (r) were found for the 110kD lipocalin complexed pro-MMP-9 vs ESR (A) and PLT (B), and for the 95kD activity vs PLT (C), where * = p < 0.05; ** = p < 0.01.
Figure 5. Correlation of MMP-2 gelatinase activities with laboratory measures of inflammation.
ESR and PLT determined at the point of sampling were correlated with the 70kD and 65kD gelatinase activities that are due to the pro- and active forms of MMP-2, respectively, as well as the ratio active:pro-MMP-2. Significant Spearman’s Rank correlation values (r) were found for the 65kD active MMP-2 activity (A) and the active:pro-ratio (B) vs ESR, where ** = p < 0.01.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5