Synovial Tissue Inflammation in Early and Late Osteoarthritis
Maria J Benito, Douglas J Veale, Oliver FitzGerald, Wim B van den Berg, and Barry Bresnihan

DISCLAIMER
The initial version of ARD Online First articles are papers in manuscript form that have been accepted and published in ARD Online but they have not been copy edited and not yet appeared in a printed issue of the journal. Copy editing may lead to differences between the Online First version and the final version including in the title; there may also be differences in the quality of the graphics. Edited, typeset versions of the articles may be published as they become available before final print publication.

Should you wish to comment on this article please do so via our eLetter facility on ARD Online (http://ard.bmjournals.com/cgi/eletter-submit/ard.2004.025270v1)

DATE OF PUBLICATION
ARD Online First articles are citable and establish publication priority. The publication date of an Online First article appears at the top of this page followed by the article’s unique Digital Object Identifier (DOI). These articles are considered published and metadata has been deposited with PubMed/Medline.

HOW TO CITE THIS ARTICLE

*Replace with date shown at the top of this page - remove brackets and asterisk

Online First articles are posted weekly at http://ard.bmjournals.com/onlinefirst.shtml
SYNOVIAL TISSUE INFLAMMATION IN EARLY AND LATE OSTEOARTHRITIS

Maria J Benito¹, Douglas J Veale¹, Oliver FitzGerald¹, Wim B van den Berg², Barry Bresnihan¹.

¹ Department of Rheumatology, Education and Research Centre, St. Vincents University Hospital, Dublin, Ireland.
² Department of Rheumatology, University Medical Centre Nijmegen, Nijmegen, The Netherlands

Corresponding Author: Barry Bresnihan
Department of Rheumatology, St Vincent’s University Hospital
Dublin 4, Ireland.
Tel.: +35312774737; Fax. +35312094076
Email: b.bresnihan@svcpc.ie
ABSTRACT

Objective: The aim of this study was to compare selected immunohistologic features of inflammation in synovial tissue obtained from patients with early and late osteoarthritis (OA).

Methods: Synovial tissue samples were obtained from 10 patients with knee pain, normal radiographs and arthroscopic manifestations of OA (early OA), and from 15 patients with OA undergoing knee joint arthroplasty (late OA). Conventional immunohistochemical techniques were employed to quantify the microscopic manifestations of inflammation. The inflammatory cell infiltrate, blood vessel formation and angiogenic factors, nuclear factor-κB (NF-κB) activation, expression of tumour necrosis factor-α (TNFα) and interleukin-1β (IL-1β), and the presence of cyclooxygenase (COX)-1 and COX-2 were quantified. Fibroblast-like synoviocytes (FLS) were isolated from early and late OA tissue samples to compare in-vitro production of prostaglandin E2 (PGE2).

Results: Synovial tissue from patients with early OA demonstrated significantly greater CD4+ (p=0.017) and CD68+ (p<0.001) cell infiltration, blood vessel formation (p=0.01), vascular endothelial growth factor (VEGF) (p=0.001) and intercellular adhesion molecule-1 (ICAM-1) expression (p<0.001). The numbers of TNFα- and IL-1β-producing cells were also significantly greater in early OA (p<0.001). The manifestations of inflammation in early OA were associated with increased expression of both the NF-κB1 (p<0.001) and RelA (p=0.015) subunits, and with increased COX-2 expression (p=0.04). Cytokine-induced PGE2 production by cultured FLS was similar in both groups.

Conclusion: Increased mononuclear cell infiltration and over-expression of mediators of inflammation were observed in early OA, compared to late OA. Isolated FLS were functionally similar in both groups, consistent with micro-environmental differences in the synovial tissue during different phases of OA. These observations may have important therapeutic implications for some patients during the early evolution of OA.

Keywords: early osteoarthritis, inflammation, synovitis, osteoarthritis.
INTRODUCTION
Osteoarthritis (OA) is the most common form of arthritis, and is the single most important cause of disability in older adults (1). The aetiology of OA is multifactorial and can include both systemic and local biomechanical factors (2). Systemic factors that have been associated with OA include age, gender, racial and genetic susceptibility, bone density, oestrogen levels and nutritional levels.

Synovial membrane inflammation may also play a role in the pathophysiology of OA (3). Imaging modalities such as magnetic resonance imaging and ultrasonography have demonstrated synovitis in early OA, even in joints where synovitis was not detected clinically (4,5). The occurrence of synovitis following trauma to the knee joint may result in progressive patello-femoral chondropathy (6). Immunohistochemical studies have confirmed that synovial tissue from patients with early OA was characterized by mononuclear cell infiltration, and the production of pro-inflammatory cytokines and mediators of joint damage (7-9). The suggestion that synovial inflammation may be an important aetiological factor in OA was supported by elevated serum C-reactive protein (CRP) levels, which were associated with progression of OA (10-12).

In this study, synovial tissues from patients with very early OA were evaluated for the presence of inflammation. Selected mediators of inflammation were quantified and compared to tissue samples from patients with late OA. The expression of Rel/NF-κB subunits was also examined. A range of inflammatory activity was observed in both categories of OA. Of interest, the measures of inflammation were significantly greater in the patients with very early OA. These observations suggest that targeted inhibition of pro-inflammatory mechanisms during the early phases of OA may benefit some patients.

METHODS
Patients:
Patients with anterior knee pain for less than 1 year, who were considered to have early OA, were invited to undergo arthroscopic synovial biopsy of the symptomatic joint. All fulfilled the ACR criteria for OA of the knee (13) with at least 5 of the following features: knee pain, knee joint tenderness, no palpable warmth over the knee, minimal stiffness (less than 30 minutes), normal acute phase measures (erythrocyte sedimentation rate and C-reactive protein levels), and negative test for rheumatoid factor. All had normal knee joint radiographs. None had a history of clinically significant trauma to the target joint. The early nature of OA was defined at arthroscopy, and all patients demonstrated evidence of chondropathy with clearly defined fibrillation of articular cartilage (14). All patients gave written consent to undergo an arthroscopic examination and synovial biopsy. Synovial tissue samples from patients with late OA were obtained at the time of knee joint arthroplasty. All had clinical and radiographic features of advanced OA. None had a history of inflammatory arthritis. The study was approved by the institutional ethics committee.

Arthroscopy and synovial biopsy:
Arthroscopy was performed under local anaesthetic, a technique that is well tolerated and safe (15,16). In brief, a 2.7 mm diameter needle arthroscope was inserted into the
knee joint using an infero-lateral portal. The three articular compartments of the knee joint were explored. The biopsies were obtained through a supero-lateral portal after a detailed intra-articular examination. Synovial membrane biopsies were taken under direct visualisation from areas of macroscopically apparent synovial villous hypertrophy, snap-frozen in optimal cutting temperature (OCT) embedding medium (Tissue-Tek) (Miles Inc., Elkhart, IN) by immersion in liquid nitrogen and stored at -70°C until processed. Synovial tissue obtained from patients with late OA was selected by the orthopaedic surgeon. Efforts were made to ensure that tissue was selected from areas demonstrating gross synovial hypertrophy. If hypertrophy was not apparent, tissue samples were randomly selected. The tissue samples were immediately transferred to the rheumatology laboratory where they were snap-frozen in OCT embedding medium by immersion in liquid nitrogen and stored until use.

Immunohistochemistry:
Prior to staining, the slides were thawed at room temperature for 15 minutes and then fixed in acetone for 10 minutes. A standard 3-stage immunoperoxidase technique was used. All reagents were diluted in freshly prepared phosphate buffered saline (PBS) (pH 7.4, 25°C) (Sigma Chemical Co. Ltd, Poole, England). Sections were incubated in a humidified chamber throughout the procedure. Normal serum (0.5%) from the same species as the secondary biotinylated antibody was applied to the tissue sections for 15 minutes. After washing in PBS, then blotting away the excess moisture, the primary monoclonal anti-human CD4 (Clon MT310; 5 µg/ml 1:20 dilution) or CD68 (Clon EBM11; 2.15 µg/ml 1:200 dilution) (Dako Ltd., High Wycombe, England) antibodies were added to the section for 1 hour at room temperature to elucidate the inflammatory cell infiltrate. Antibodies to human vascular endothelial growth factor (VEGF) (4 µg/ml 1:50 dilution) (Santa Cruz Biotechnology, Santa Cruz, CA, USA), factor VIII (Clon F8/86; 2.45 µg/ml 1:100 dilution) (Dako), and intercellular adhesion molecule (ICAM)-1 (0.25 µg/ml 1:400 dilution) (Serotec Ltd, Oxford, England) were used to detect new blood vessel formation and adhesion molecule expression.

A polyclonal anti-NF-κB1 (p50) antibody (4 µg/ml 1:50 dilution) (Santa Cruz Biotechnology), and a monoclonal anti-Rel A (p65) antibody (5 µg/ml 1:200 dilution) (Pharmingen Int, San Diego, CA, USA) were employed to quantify the nuclear localization staining (NLS) of the two activated subunits of NF-κB. Anti-TNFα (4 µg/ml 1:50 dilution) and anti-IL-1β (5 µg/ml 1:40 dilution) (Santa Cruz Biotechnology) antibodies were employed to quantify the expression of cytokines. Anti-human COX-1 (10 µg/ml 1:20 dilution) and COX-2 (2.5 µg/ml 1:80 dilution) antibodies (Santa Cruz Biotechnology) were used to quantify the expression of cyclooxygenases.

After a further washing step, biotinylated secondary antibody was added for 30 minutes followed by horse-radish peroxidase-conjugated avidin-biotin complex for another 30 minutes (Vectastain kit, Vector Laboratories, Burlingame, CA, USA). Hydrogen peroxide (GPR) (Merck Ltd, Poole, England) 3% in distilled water was applied for 7 minutes to quench endogenous peroxide, and the tissue was then washed with distilled water. Colour was developed with 3,3’ diaminobenzadine (DAB) (Sigma Chemical Co. Ltd., Poole, England). A 1ml frozen aliquot of DAB solution was thawed and added to 9 ml PBS with 20µl hydrogen peroxide added immediately before use, yielding a 0.0625% DAB and 0.03% hydrogen peroxide solution. This was added to the tissue sections and left for 13 minutes. The colour reaction was terminated after washing the sections in tap water. Finally, sections were washed serially in water (3 minutes),
Mayer’s hemalum (2 minutes), water (3 minutes), industrial methylated spirits (IMS) 70% and 90% (BP chemicals Ltd, Hull, England) (10 minutes). This was followed by two washes of 10 minutes each in IMS 100%, then xylene (AnalaR) (Merck Ltd, Poole, England) for 10 minutes. DPX mountant (Merck) was placed on top of the tissue to allow the coverslips (Chance Propper Ltd, Warley, England) to adhere. Negative control experiments were performed by using immune-absorbed serum, isotype-matched irrelevant antibodies and by omitting the primary antibody.

Quantitative analysis:
Quantitative analysis was performed on all synovial tissue samples. Details of the analytic methods have been previously published (17,18). A single assessor (MB), blinded to the category of OA tissue, systematically examined all sections throughout their entire area. A Leitz Wetzlar Dialux 20 microscope was used to examine the sections under 400x magnification and a reticule fitted into one of the eyepieces of the microscope allowed analysis of the tissue with reference to high power fields (HPF). A cell was regarded as exhibiting positive staining if a nucleus was identified in association with appropriate staining.

In the lining layer, the number of CD68+, NF-κB1+ or RelA+ cells were expressed as a percentage of the total number of cells counted, up to a maximum of 300 cells per section. In the sub-lining area, up to 100 HPFs (range 5-100) were examined for the presence of CD4+, CD68+, NF-κB1+ and RelA+ cells. The numbers of ICAM-1+, TNFα+, IL-1β+, COX-1+ and COX-2+ cells were counted throughout the synovium. Scoring the sections was achieved by counting the number of positively staining cells per HPF and using a conversion factor based on the area of the HPF; the final result was expressed as cells per mm². The total number of blood vessels were counted and expressed as the number/HPF. A semi-quantitative score (0-4) was used to evaluate VEGF expression in the synovium. The staining was individually evaluated giving values from 0 to 4 in the lining and sublining layers, and in blood vessels (0, minimal positive cells; 1, positive cells scattered throughout the tissue; 2, same as 1 with some areas of aggregation; 3, widespread positivity with more areas of aggregation; 4, same as 3 with areas of dense aggregation). The total score derived from the sum of the three areas was taken as the measure of VEGF expression.

Synovial cell cultures:
Tissue samples from early and late OA were minced and incubated with 4 µg/ml collagenase type II (Worthington Biochemical, USA) in culture RPMI 1640 medium with L-glutamine (Gibco BRL, Life technologies, Scotland) for 2 hours. After centrifugation, cells were plated in 25 cm² culture-flasks and grown in medium supplemented with HEPES buffer 1M (Gibco BRL), 20% fetal calf serum (FCS; Bioclear, UK), penicillin (100 units/ml) and streptomycin (100 units/ml) and 2500 µg/ml fungizone/amphotercin B (Gibco BRL) at 37°C in a humidified atmosphere of 95% air 5% CO₂ as previously described (19). Cells were used at passage 2. Synoviocytes were grown in serum-free media for 24 hours.

Enzyme-linked immunosorbent assay (ELISA):
In order to determine the released amount of PGE₂, synovial cells extracted from 4 different patients with early and 4 with late stage of OA, were plated in 12 wells. Depleted OA synovial cells were stimulated with recombinant human interleukin-1β (IL-1β; Calbiochem, Darmstadt, Germany), tumor necrosis factor-α (TNFα;
Calbiochem) or interleukin-6 (IL-6; R&D Systems, Oxford, England) at final concentration of 10 ng/ml for 6 hours. After incubation, supernatants were collected and stored at −70º C for further detection of PGE2 levels. PGE2 determinations were performed in duplicate using a commercial PGE2 Enzyme Immunoassay kit and following the indication of the manufacturer (Assay Designs Inc., Ann Arbor, MI, USA).

Statistical analysis:
Comparison of means was evaluated by independent Student’s t-test, Bonferonni correction was performed. P values less than 0.05 were considered significant. Intra-observer variability was determined after measurement of each parameter in half of the samples and was completed on three occasions over several months. The mean coefficients of variation were less than 8% for all parameters.

RESULTS

Clinical details:
Ten patients with early OA were evaluated. The patients were aged between 46 and 74 years (mean 63.4). Knee symptoms had been present for less than 1 year. All were taking occasional simple analgesia. None were receiving non-steroidal anti-inflammatory drugs (NSAIDs) at the time of biopsy, and none had received an intra-articular corticosteroid injection. Synovial tissue was also obtained from 15 patients late OA. The patients with late OA were aged between 67 and 83 years (mean 74.7). All were receiving analgesic medications prior to surgery, and 7 were taking NSAIDs. None had received intra-articular corticosteroids within 4 months of surgery. The laboratory parameters at the time of surgery were not systematically recorded.

Inflammation in synovial tissue from patients with early and late OA:
Selected immunohistologic features of inflammation were quantified in the synovial tissue samples (Table 1). Early OA tissues exhibited significantly greater lining layer thickness with a mean cell depth of 4.0, compared to 2.3 in late OA (p=0.011). Similarly, the intensity of both CD4+ T cell and CD68+ macrophage infiltration was significantly greater in early OA (p =0.017 and <0.001, respectively). Figure 1 demonstrates prominent macrophage infiltration in synovial tissue from a patient with early OA.

Manifestations of vascular proliferation and activation in synovial tissue from patients with early and late OA were also compared in Table 1. Blood vessels, identified by positive factor VIII staining, were significantly more numerous in early OA tissue samples (p=0.01). In addition, VEGF expression, a marker of vascular proliferation, was significantly greater in early OA (p=0.002). Finally, the adhesion molecule ICAM-1, which is expressed on vascular endothelial cells, as well as on synoviocytes and macrophages, was expressed more abundantly in early OA tissues (p<0.001). Figure 2 demonstrates prominent vascularity in synovial tissue from a patient with early OA.

Significantly greater numbers of both TNFα- and IL-1β-producing cells were observed in early OA (p<0.001) (Table 1). The mean numbers of cells expressing COX-1 were similar in early and late OA. However, the number of cells expressing COX-2 was
significantly greater in early OA (p=0.04). COX-2 expression was observed both in the lining and sublining layers in early OA tissues.

Finally, the NF-κB1 and RelA subunits were abundantly expressed in all of the synovial tissue samples examined. There were significantly more NF-κB1+ and RelA+ cells in early OA compared to late OA (p<0.001 and 0.015, respectively) (Table 1). The NF-κB1 subunit was expressed on endothelial cells, on many of the infiltrating perivascular cells, and on the cells accumulating in the synovial lining layer. The RelA subunit was less widely expressed and present predominantly on endothelial cells, and on occasional sublining and lining layer cells.

In vitro production of PGE₂ by isolated synoviocytes from patients with early and late OA:

The manifestations of synovial tissue inflammation were quantifiably different in early and late OA. Experiments were performed to determine if synoviocyte populations isolated from patients with early and late OA were also functionally different. Cultured FLS were stimulated with IL-1β, TNFα, or IL-6, and PGE₂ production was measured in 4 experiments. Thus, IL-1β stimulation of FLS from patients with both early and late OA resulted in significantly more PGE₂ production than unstimulated control cultures (p=0.003 and 0.01, respectively) (Figure 3). Similarly, TNFα and IL-6 stimulation resulted in significantly more PGE₂ production, compared to controls, in both early (p=0.007 and <0.001, respectively) and late (p=0.001 and <0.001, respectively) OA FLS cultures. Of interest, there were no differences between early and late OA FLS cultures in cytokine-induced PGE₂ production, suggesting that synoviocytes from patients with early and late OA were functionally similar.

DISCUSSION

In this study, synovial tissue inflammation in the symptomatic knee joints of patients with early OA, and in the knee joints of patients undergoing arthroplasty, was quantified and compared. The early OA tissue samples were selected from patients with recent-onset knee pain, normal radiographs, and arthroscopic features of early articular cartilage degeneration. There were no clinical or laboratory features of inflammatory arthritis. Mononuclear cell infiltration, blood vessel formation, and the expression of pro-inflammatory mediators and nuclear transcription factors were over-expressed in early OA.

The observation that synovial tissue from patients with early OA demonstrated more features of inflammation than late OA appeared to contrast with some previous studies (7,8,20,21). The explanation for the apparent discrepancy is unclear, but may be related to differences in patient and tissue selection, or to the quantification techniques that were employed. For example, in one previous immunohistochemical study of early OA, patients were selected from sports medicine and orthopaedic clinics, were considerably younger in age, and many were without knee pain (7). Other investigators who completed a cross-sectional study of synovial tissue in early OA evaluated 7 patients who were categorized as early and 27 as severe OA (8). These categories were broadly similar to the early and late OA cohorts evaluated in the present study. A semi-quantitative method to measure synovial tissue inflammation was employed. Grade I cellularity (scale 0 to IV), grade II vascularity, and grade I total inflammatory scores
were described in the majority of patients in both the early and severe OA patient groups (8). These semi-quantitative measures of inflammation were relatively low. The measures of synovial inflammation in both early and late OA that were observed in the present study were also low, and less than those normally described in RA. Previous studies from this institution and others that included tissue samples from patients with OA and RA demonstrated infiltrating mononuclear cell populations and pro-inflammatory mediators in both disorders, which were consistently less abundant in OA (22-28).

The limitations of applying semi-quantitative scoring techniques to the measurement of synovial tissue inflammation have been previously highlighted (21,22). In the present study, a sensitive quantitative method of scoring synovial tissue inflammation was employed. Significant differences between early and late OA were consistently demonstrated with respect to the infiltrating mononuclear cell populations and the expression of several pro-inflammatory mediators. It is unlikely that the observations reported in this study are spurious. Where possible, areas of macroscopic synovial hypertrophy were selected for biopsy in both patient groups, which may have increased the likelihood of demonstrating microscopic inflammation.

Infiltration of synovial tissue by mononuclear cell populations, proliferation of new blood vessels, and increased expression of several critical molecules, including cytokines, angiogenic factors, adhesion molecules, and inducible COX are characteristic of chronic synovitis in inflammatory arthritis. In this study, synovial tissue from patients with rheumatoid arthritis (RA) and other inflammatory arthropathies were not included for comparison. The principle observation reported here was not that the intensity of synovitis in OA might be similar to inflammatory arthropathies, but that the intensity of inflammation in OA was greatest during the early phase.

In order to determine whether synovial cell populations from patients with early and late OA were functionally different, isolated synoviocytes were cultured with a range of different pro-inflammatory cytokines. Cytokine-induced PGE2 production by FLS from patients with early and late OA was significantly greater than normal FLS, but no differences between early and late OA were observed. The absence of functional differences between isolated FLS from patients with early and late OA suggests that increased mononuclear cell infiltration and the over-expression of pro-inflammatory mediators in early OA represent micro-environmental differences in synovial tissue at different phases of OA.

It is likely that over-expression of inflammatory mediators in early OA reflects increased activation of inter-related pathophysiologic pathways that contribute to progressive cartilage degradation in some patients. The importance of synovitis in the pathophysiology of OA is increasingly recognised, although inflammation may not be the primary mechanism in all (11,29,30). Longitudinal studies employing arthroscopy, synovial tissue analysis, and sensitive imaging modalities will be required to determine if the intensity of synovitis plays a critical role in progressive joint damage, and if targeted inhibition of synovitis in early generalised OA could limit the rates of progressive cartilage degradation and functional impairment.
Disclosure: Dr. MJB was supported by a grant from the European Commission: QLK6-CT-1999-02072

LEGENDS

Figure 1. Photomicrographs of synovial tissue from a patient with early osteoarthritis, demonstrating infiltration by CD68+ mononuclear cells (magnification x100).

Figure 2. Photomicrograph of synovial tissue from a patient with early osteoarthritis, demonstrating factor VIII+ endothelial cells (magnification x100).

Figure 3. Prostaglandin E$_2$ (PGE$_2$) production by isolated synoviocytes from patients with early and late osteoarthritis. PGE$_2$ levels were measured after stimulation of synoviocytes by IL-1β, TNFα, and IL-6, and were compared to unstimulated control cultures. The results represent the mean values +/- the standard errors from four experiments.

REFERENCES

Table 1. Immunohistologic measures of inflammation in osteoarthritis synovial tissue.

<table>
<thead>
<tr>
<th></th>
<th>Early</th>
<th>Late</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lining layer</td>
<td>4.00±1.88</td>
<td>2.30±1.03</td>
<td>0.011</td>
</tr>
<tr>
<td>CD4+</td>
<td>181.15±86.19</td>
<td>105.84±42.97</td>
<td>0.017</td>
</tr>
<tr>
<td>CD68+</td>
<td>280.57±59.93</td>
<td>171.92±58.11</td>
<td><0.001</td>
</tr>
<tr>
<td>Factor VIII</td>
<td>9.84±1.77</td>
<td>7.58±2.34</td>
<td>0.010</td>
</tr>
<tr>
<td>VEGF</td>
<td>8.33±2.23</td>
<td>4.75±2.66</td>
<td>0.001</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>438.12±116.73</td>
<td>159.89±56.66</td>
<td><0.001</td>
</tr>
<tr>
<td>TNFα</td>
<td>431.21±101.61</td>
<td>210.43±64.54</td>
<td><0.001</td>
</tr>
<tr>
<td>IL-1β</td>
<td>542.01±102.12</td>
<td>202.46±35.99</td>
<td><0.001</td>
</tr>
<tr>
<td>COX-1</td>
<td>216.32±102.57</td>
<td>218.12±79.35</td>
<td>0.48</td>
</tr>
<tr>
<td>COX-2</td>
<td>312.77±114.56</td>
<td>233.84±50.69</td>
<td>0.04</td>
</tr>
<tr>
<td>NF-κB1</td>
<td>252.16±49.06</td>
<td>163.42±47.68</td>
<td><0.001</td>
</tr>
<tr>
<td>RelA</td>
<td>134.20±48.36</td>
<td>87.85±19.82</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± SD. Lining layer values represent the cell depth. Factor VIII represents the number of blood vessels/high power field. VEGF is expressed as the sum of three semi-quantitative scores (0-4) derived from the lining and sublining layers, and blood vessels. CD4+, CD68+, ICAM-1+, IL-1β+, TNFα+, COX-1 and 2+, NF-κB1+ and RelA+ cells are expressed as number of cells/mm².

"The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in ARD editions and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence"
Figure 1
Figure 3

![Bar chart showing levels of IL-1β, TNFα, and IL-6 in control, early OA, and late OA groups.]

- IL-1β: p = 0.003, p = 0.01
- TNFα: p = 0.007, p = 0.001
- IL-6: p < 0.01, p < 0.001

*p < 0.05; **p < 0.001