incidence of arthritis, more severe clinical symptoms, and more pronounced joint inflammation and bone damage. NKp46 deficiency had no significant influence on the incidence and severity of arthritis in collagen-induced arthritis mice.

Conclusion: This study examined the proportion of NKp46+ ILC3-like cells in the peripheral blood, spleen, lymph nodes, and paws in CIA mice and their correlation with disease severity. We confirmed that infiltration of NKp46+ ILC3-like cells in CIA joints positively correlates with arthritis progression, inflammation, cartilage erosion, and bone destruction. Most importantly, we revealed the pathogenic role of NKp46+ ILC3-like cells in rheumatoid arthritis through adoptive cell transfer, which prominently exacerbates CIA arthritis. NKp46 may not be the primary actor in the pathogenic function of NKp46+ ILC3-like cells in CIA. Overall, our current work suggests that NKp46+ ILC3-like cells infiltrate in inflamed joints and participate in the pathogenesis of autoimmune arthritis.

Acknowledgements: This study was supported by the Natural Science Foundation of China (No. 81803932 and 82174171). The funders had no role in study design, data collection, analysis, decision to publish, or manuscript preparation.

Disclosure of Interests: None Declared.

References:

