CD4⁺ T cells through histological and cellular and molecular biology techniques, and propose possible molecular regulatory pathways. Methods: Patients with RA from December 2019 to January 2022, and gender and age-matched control subjects (OA) and healthy controls (HC) were enrolled. Peripheral blood mononuclear cells (PBMC) and synovial fluid mononuclear cells (SFMC) were collected and CD4⁺ T cells were sorted by magnetic beads. The expression levels of different phenotypes of CD4⁺ T cells and important cytokines were analyzed by flow cytometry; the secretion levels of IL-10 and IFN-γ were detected by ELISA technology. In the intervention experiment, the CD4⁺ T cells were cultured with concentrations of atorvastatin to inhibit the cholesterol metabolism mevalonate pathway and supplement mevalonate acid, and then CD4⁺ T cell phenotype and cytokine expression were detected. The synovial tissues were obtained from RA and OA patients receiving joint replacement surgery, and non-affected distal interphalangeal joint tissues were obtained from refRA and ERA patients. Immunohistochemistry and multiplex immunofluorescence were used to detect the expression of inflammation signalling pathway of CD4⁺ T cells. CH25H was knocked down using small interfering RNA (siRNA), and the effects of knockdown of CH25H on inflammation and the effect on the transformation of CD4⁺ T cells were detected by the above methods. Results: (1) IL-10⁺CD4⁺ T cells in PBMC/SFMC of RA patients were significantly lower than HC/OA, as well as the expression of IL-10. After interfering the mevalonate pathway by atorvastatin, the ratio of IL-10⁺IFN-γ⁺CD4⁺ T cells and IL-10⁺INFN-γ⁺CD4⁺ T cells as well as the expression of IL-10 decreased in a concentration-dependent manner. The down-regulation effect induced by atorvastatin was compensated after the supplementation of mevalonate acid. (2) The expression of CH25H and LXR in CD4⁺ T cells of RA synovial tissue increased detected by immunohistochemistry and multiplex immunofluorescence, and the expressions of CH25H and caspase-1 in CD4⁺ T cells in synovial fluid were found increased by Western Blot, as compared with that of OA. (3) After the successful knockdown of CH25H confirmed by Real-time PCR and Western Blot, a significant decrease in the proportion of IL-10⁺IFN-γ⁺CD4⁺ T cells, and increase in proportion of IL-10⁺INFN-γ⁺CD4⁺ T cells were found in RA patients, accompanied with increase in IL-10⁺CD4⁺ T cells, while the proportion of IFN-γ⁺CD4⁺ T cells and expression of IL-10 decreased significantly. After supplementation with 25-HC, the siRNA-CH25H-mediated decrease in IL-10⁺CD4⁺ T cells was reversed and IFN-γ⁺CD4⁺ T cell formation was reduced. Meanwhile, the expression of NLRP3 and activated caspase-1 (caspase-1 p20) in peripheral blood CD4⁺ T cells was reduced, and could eliminate after supplementation with 25-HC. Conclusion: In peripheral CD4⁺ T cells in RA patients, 25-HC may activate the NLRP3 inflammasome through CH25H-LXR pathway, thereby inhibiting the phenotypic transformation of IFN-γ⁺CD4⁺ T cells to IL-10⁺CD4⁺ T cells, and eventually promoting the inflammatory process in RA. These findings provide new clue for the mechanism of CD4⁺ T cells in the pathogenesis of RA and suggest that the cholesterol metabolism pathway may become a new target of RA treatment. REFERENCES: [1] Nagy, G. et al. (2021). EULAR definition of difficult-to-treat rheumatoid arthritis. Annals of the Rheumatic Diseases, 80(1), 31. [2] Roödenrijn, N. M. T. et al. (2018). Characteristics of difficult-to-treat rheumatoid arthritis: results of an international survey. Annals of the Rheumatic Diseases, 77(12), 1705.

Table 1

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Marker</th>
<th>Adjusted p-value</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monocytes</td>
<td>CTLA4</td>
<td>0.04</td>
<td>-0.03</td>
</tr>
<tr>
<td>CD4⁺ naïve T</td>
<td>PD1</td>
<td>0.02</td>
<td>-0.04</td>
</tr>
<tr>
<td>CD8⁺ naïve T</td>
<td>NKp46</td>
<td>0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>NKp46 (CD8+ naïve T cells)</td>
<td>0.04</td>
<td>-0.08</td>
<td></td>
</tr>
</tbody>
</table>

Functional markers differences (refRA vs ERA): Table 1 shows functional markers expression across immune cell clusters in refRA compared to ERA, using linear mixed modelling (FDR <0.05). Acknowledgements: This study was supported by a UCSF Pharma PhD studentship (TB).

Disclosure of Interests: None Declared.

DOI: 10.1136/annrheumdis-2023-eular.5515
incidence of arthritis, more severe clinical symptoms, and more pronounced joint inflammation and bone damage. NKp46 deficiency had no significant influence on the incidence and severity of arthritis in collagen-induced arthritis mice.

Conclusion: This study examined the proportion of NKp46+ ILC3-like cells in the peripheral blood, spleen, lymph nodes, and paw tissues in CIA mice and their correlation with disease severity. We confirmed that infiltration of NKp46+ ILC3-like cells in CIA joints positively correlates with arthritis progression, inflammation, cartilage erosion, and bone destruction. Most importantly, we revealed the pathogenic role of NKp46+ ILC3-like cells in rheumatoid arthritis through adoptive cell transfer. NKp46+ ILC3 cells were a major contributor to CIA arthritis. NKp46 may not be the primary actor in the pathogenic function of NKp46+ ILC3-like cells in CIA. Overall, our current work suggests that NKp46+ ILC3-like cells infiltrate in inflamed joints and participate in the pathogenesis of autoimmune arthritis.

Acknowledgements: This study was supported by the National Science Foundation of China (No. 81803932 and 82174171). The funders had no role in study design, data collection, analysis, decision to publish, or manuscript preparation.

Disclosure of Interests: None Declared.

DOI: 10.1136/annrheumdis-2023-eular.80

SERUM AMYLOID A CONNECTS LIVER AND JOINT TO PROMOTE MACROPHAGE ACTIVATION AND CHRONIC ARTHRITIS VIA NFAT5

Keywords: Innate immunity, Rheumatoid arthritis, Biomarkers

Background: The nuclear factor of activated T-cells 5 (NFAT5) is a member of the Rel family of transcription factors that can be activated by hypertonic stimuli [1]. It remains unclear, however, whether NFAT5 is required for damage-associated molecular patterns (DAMPs)-triggered inflammation and immunity. Serum amyloid a(SAA) is an endogenous toll-like receptor (TLR) ligand functioning as a DAMP responds to bacterial endotoxins [2]. In response to infection and inflammation, innate immune cells secrete pro-inflammatory cytokines, in particular IL-1β and TNF-α, to which the liver responds by producing acute-phase reactants [3]. Further identification of such pathologic process by acute-phase reagents will allow for better selection of therapeutic targets as well as a greater understanding of the mechanisms underlying chronic inflammation.

Objectives: To investigate SAA, an acute phase reactant as well as a TLR ligand, activates NFAT5 in macrophages of arthritic joints after being secreted from the liver and thereby promotes chronic inflammation.

Methods: SAA-induced upregulation of NFAT5 expression and activity in RAW264.7 cells, mice bone marrow derived macrophages and human peripheral CD14+ monocytes were assessed by western blot and/or luciferase reporter assays. SAA-activated arthritis in mice was generated by injecting SAA (5 μg x1) in the affected joint of mice with a suboptimal form of IL-1β-induced arthritis, which was induced by injection of methylated bovine serum albumin (mBSA, 200 μg x1) and/or IL-1β (250ng x2). Decrease in arthritis severity and inflammatory cell infiltration by NFAT5 and Tlr2/-/- mouse, specific knockout of myeloid cell infiltration by anti-citrullinated protein autoantibodies (ACPA) play an important role in the pathogenesis of RA and can be detected before the onset of classifiable or clinical RA. ACPA* individuals without clinical RA, or ACPA* At-Risk, are being studied to identify effective preventive interventions. B cells also contribute to disease through autoantibody-independent mechanisms, including production of RANKL and inflammatory cytokines. RANKL-producing B cell in clinical RA have

REFERENCES:

Figure 1.

Acknowledgements: This study was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2015R1A3A2032927) to W.U.K.) and a grant from NRF by the Ministry of Education (2017R1D1A1B04033009 to D.K. and 2020R1I1A2069425 to Y.M.K.)

Disclosure of Interests: None Declared.

DOI: 10.1136/annrheumdis-2023-eular.1507

ACTIVATED B CELLS ARE ENRICHED FOR RANKL AND PROINFLAMMATORY CYTOKINE PRODUCTION PRIOR TO ONSET OF CLINICAL RHEUMATOID ARTHRITIS

Keywords: Cytokines and chemokines, Adaptive immunity, Rheumatoid arthritis

Background: Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by inflammation of the synovial tissue lining the joint, leading to bone damage. Anti-citrullinated protein autoantibodies (ACPAs) play an important role in the pathogenesis of RA and can be detected before the onset of classifiable or clinical RA. ACPA* individuals without clinical RA, or ACPA* At-Risk, are being studied to identify effective preventive interventions. B cells also contribute to disease through autoantibody-independent mechanisms, including production of RANKL and inflammatory cytokines. RANKL-producing B cell in clinical RA have

