immunosuppressive drugs). We also detected that previous ocular surgery might contribute to a lower VQ25 score. This preliminary data allows us to evaluate other variables that contribute to the burden of the disease and the extent of the patient's suffering regarding their vision and reflect the importance of identifying them to improve our patients' quality of life.

Table 1. Multivariate analysis to assess the influence of socio-demographic and clinical related variables in the VRQoL of a cohort of NIU patients.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coef (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>1.82 (0.98 to 4.63)</td>
<td>0.21</td>
</tr>
<tr>
<td>BCAVA (logMAR)</td>
<td>-6.77 (-10.53 to -3.01)</td>
<td>4.2x10^-4</td>
</tr>
<tr>
<td>Baseline visit</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>1 year visit</td>
<td>-5.18 (-1.68 to 1.32)</td>
<td>0.81</td>
</tr>
<tr>
<td>2 year visit</td>
<td>-0.9 (-1.50 to 1.11)</td>
<td>0.77</td>
</tr>
<tr>
<td>BCAVA X 1 year visit</td>
<td>-10.13 (6.93)</td>
<td>9.5x10^-5</td>
</tr>
<tr>
<td>BCAVA X 2 year visit</td>
<td>-6.46 (1.32)</td>
<td>9.18x10^-5</td>
</tr>
<tr>
<td>Married</td>
<td>1.96 (0.34 to 4.26)</td>
<td>0.09</td>
</tr>
<tr>
<td>Permanent work disability</td>
<td>-2.74 (-36.90 to -17.93)</td>
<td>1.47x10^-8</td>
</tr>
<tr>
<td>Unemployed</td>
<td>-7.04 (-10.82 to -3.27)</td>
<td>2.6x10^-5</td>
</tr>
<tr>
<td>Cells in anterior chamber ≥ 2+</td>
<td>-3.85 (-7.03 to -0.67)</td>
<td>0.02</td>
</tr>
<tr>
<td>Cataract surgery</td>
<td>-4.61 (-8.15 to -1.07)</td>
<td>0.01</td>
</tr>
<tr>
<td>Gastric surgery</td>
<td>-14.51 (-24.72 to -4.30)</td>
<td>0.01</td>
</tr>
<tr>
<td>Other intracranial surgery</td>
<td>-6.77 (-10.53 to -3.01)</td>
<td>4.2x10^-4</td>
</tr>
<tr>
<td>No ISD use</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>Synthetic ISDs</td>
<td>-5.38 (-8.19 to -2.56)</td>
<td>1.9x10^-4</td>
</tr>
<tr>
<td>Biological ISDs</td>
<td>3.11 (0.59 to 5.81)</td>
<td>0.01</td>
</tr>
<tr>
<td>Synthetic and biological ISDs</td>
<td>-2.22 (-5.79 to 1.34)</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Figure 1. VFQ25 during follow-up

REFERENCES: NIL.

Acknowledgements: NIL.

Disclosure of Interests: None Declared.

DOI: 10.1136/annrheumdis-2023-eular.2210

AB1503

THE IMPACT OF OBESITY ON CLINICAL COURSE AND BIOLOGIC DMARD FAILURE IN PATIENTS WITH ADULT ONSET STILL’S DISEASE.

Keywords: Rare/orphan diseases, Comorbidities, Prognostic factors

AB1504

CLINICAL SPECTRUM OF IGG4-RELATED DISEASE. SINGLE UNIVERSITY HOSPITAL EXPERIENCE AND LITERATURE REVIEW

Keywords: Vasculitis, Systematic review, Organ damage

AB1509

A MULTIVARIATE ANALYSIS TO ASSESS THE INFLUENCE OF SOCIO-DEMOGRAPHIC AND CLINICAL RELATED VARIABLES IN THE VRQoL OF A COHORT OF NIU PATIENTS.

Background: Adult onset Still’s disease (AOSD) is a rare inflammatory disease characterised by fever, arthritis, evanescent cutaneous rash and a typical hyperferritinaemia [1]. Three clinical disease courses are usually identified: i. monocytemonic, characterised by a single episode; ii. polycyclic, characterised by multiple flares, alternating with remission; iii. chronic, related to a persistent active disease course [1]. AOSD may be also burdened by the occurrence of life-threatening complications. The prognosis of AOSD may be affected by the presence of comorbidities; however, the impact of obesity on these patients has not fully elucidated yet. The obesity may be considered as a negative prognostic factor in patients with rheumatic diseases. In fact, it is associated with a higher disease activity, an enhanced disability, and a less probability to achieve the clinical remission [2,3].

Objectives: We assessed the impact of obesity on clinical disease course and biologic DMARD failure in patients with AOSD. We also evaluated the influence of obesity on life-threatening complication occurrence.

Methods: An assessment of obese patients with AOSD characterised by a BMI≥30 was provided among those evaluated in Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale (GIR RCS) cohort [4]. The presence of obesity was evaluated at the time of diagnosis and defined as BMI≥30. Cox regression analyses were performed to evaluate the predictive role of obesity on predicting different disease courses and bDMARD failure in our cohort. Multivariate analyses were adjusted for age, gender, and systemic score, which was used as marker of disease severity.

Results: In this study, 139 patients were evaluated; 26 (18.7%) had a BMI≥30 and were defined as having obesity at the time of disease diagnosis (mean age of 39.3±13.6 years, 12 male gender). Obese patients did not differ in the main clinical characteristics than non-obese [fever BMI≥30: 96.2% vs BMI<30: 99.1%, p=0.340; skin rash BMI ≥ 30: 84.6% vs BMI<30: 69.0%, p=0.147; arthritis BMI≥30: 61.5% vs BMI<30: 56.6%, p=0.826]. Furthermore, obese patients showed a higher rate of bDMARD failure in the subsequent follow-up (p=0.037). In addition, obese patients with AOSD were characterized by higher values of C-reactive protein (CRP) [BMI≥30: 109.2 mg/L (IQR 117.0) vs BMI<30: 52.0 mg/L (IQR 84.3), p=0.046] than others. Obese patients with AOSD had also higher values of CRP than 2:1 age-, gender- and BMI-matched obese patients without immunodeficient inflammatory disease (IMID) (Age: 39.8 ± 13.2 years, 24 male gender out 52 patients, BMI: 32.4 ± 3.1, CRP 33.8 mg/L [IQR 34.4], p<0.001). These obese patients without IMID were recruited to fully evaluate the impact of obesity on CRP in patients with AOSD. Additionally, obesity predicted the development of a chronic disease course in patients with AOSD in both univariate (HR: 1.72, 95%CI: 1.03-2.51, p=0.038) and multivariate analyses (HR: 1.85, 95%CI: 1.45-2.89, p=0.041). Non-significant results were obtained assessing the predictive role of obesity on monocyctic and polycyclic disease courses. Furthermore, obesity resulted to be a significant predictor of failure of at least one of biologic DMARD in patients with AOSD in both univariate (HR: 3.59, 95%CI: 1.55-8.27, p=0.003). Conversely, obesity did not influence the development of life-threatening complications in our cohort.

Conclusion: The presence of obesity resulted to be a significant predictor for the development of a chronic disease course and biologic DMARD failure in patients with AOSD. In addition to increase the inflammatory burden, a high BMI may be indeed associated with a more rapid clearance, a higher volume of distribution, and a consequent low concentration of biologic DMARDs and their possible clinical failure.

REFERENCES:

[4] Biomedico, Department of Medicine, Rome, Italy

Disclosure of Interests: None Declared.

DOI: 10.1136/annrheumdis-2023-eular.4648

AB1516

RHEUMATOID ARTHRITIS AND ITS ASSOCIATIONS WITH GENETIC MARKERS: A SINGLE CENTER STUDY FROM THE LAGOA UNIVERSITY HOSPITAL.

Keywords: Rheumatoid arthritis, Genetic markers, Single-center study

AB1517

HETEROMORPHISM IN THE TRANSDUCER-CONTAINING SUBUNIT OF THE G-protein-coupled receptor 1 in patients with psoriatic arthritis.

Keywords: Psoriatic arthritis, G-protein-coupled receptor, Heteromorphism

AB1518

HETEROCHROMATIN PROTEIN 1 (HP1) LOCALIZATION IN THE JUVENILE IDIOPATHIC ARTHRITIS CELLS AND ITS ROLE IN THE DEVELOPMENT OF THE ARTHRITIC SYMPTOMS.

Keywords: Juvenile idiopathic arthritis, Heterochromatin protein 1, Development of arthritis

AB1519

THE IMPACT OF CALCIUM TURNOVER ON OLD AGE POPULATION WITH OSTEOPOROSIS.

Keywords: Calcium turnover, Old age population, Osteoporosis

AB1520

A NEW APPROACH TO THE MANAGEMENT OF PATIENTS WITH ARTHRITIS AND COMORBIDITIES TO ADDRESS THE CAUSES OF THERAPY RESISTANCE.

Keywords: Arthritis, Comorbidities, Therapy resistance

AB1521

THE IMPACT OF INTRAOCULAR SURGERY ON CLINICAL VISUAL PROGNOSIS.

Keywords: Intraocular surgery, Clinical visual prognosis

AB1522

THE IMPACT OF COMORBIDITIES ON THE CLINICAL COURSE OF PATIENTS WITH OSTEOPOROSIS.

Keywords: Comorbidities, Clinical course, Osteoporosis

AB1523

THE IMPACT OF CLINICAL COURSE AND BIOLOGIC DMARD FAILURE IN PATIENTS WITH ADULT ONSET STILL’S DISEASE.

Keywords: Clinical course, Biologic DMARD, Adult onset Still’s disease

AB1524

THE IMPACT OF OBESITY ON CLINICAL COURSE AND BIOLOGIC DMARD FAILURE IN PATIENTS WITH ADULT ONSET STILL’S DISEASE.

Keywords: Obesity, Clinical course, Biologic DMARD