AB1226

CLINICAL SIGNIFICANCE OF A PATIENT COMPLIANCE IN PREVENTION OF SECONDARY FRACTURES

Keywords: Osteoporosis

E. Simakova1, I. Zborovskaya1, S. Zavodovskaya1, L. Seewordova2, J. Polyakova2, E. Papichev2, Y. Akhverdyan2.

ACR, Rheumatology, Jupiter, United States of America; 2Research Institute of Rheumatology, Moscow, Russian Federation; 3Research Institute of Rheumatology, Volgograd, Russian Federation

Objectives: to evaluate the effect of compliance in patients with osteoporosis on the incidence of new fragility fractures.

Methods: The study was performed in two stages. At the 1st stage, a retrospective analysis of outpatient records for the period from December 2019 to December 2021 was completed in the Volgograd Center of Osteoporosis. During Phase II of the study, in December 2022, researchers conducted a telephone survey to identify new fractures.

Results: The analysis included outpatient records of 2236 patients aged 40 to 92 years with DXA scan. (1897 women and 339 men). 715 patients out of 2236 (68.02% of all included in the study) were followed up and reported new low-traumatic fractures on a telephone survey. The remaining 1521 patients out of 2236 (31.98% of all included in the study) were treated in our Osteoporosis Center. Of these, 1262 patients (82.97%) were diagnosed with osteoporosis, 115 patients had a history of fragility fractures [1,2]. But these patients refused to attend the school for patients with osteoporosis and offered treatment. 158 patients in this group (26.51%) were reported new low-traumatic fractures on a telephone survey. The remaining 1512 patients out of 2236 (68.02% of all included in the study) were followed up and treated in our Osteoporosis Center. Of these, 1262 patients (82.97%) were diagnosed with osteoporosis and treated with anti-resorptive therapy [2]. 784 out of 1262 patients (62.12%) were compliant with physician’s recommendation, these patients constituted the II group of the study (highly compliant patients). Among these patients, only 11 new low-traumatic fractures (1.4%) were registered. Group III of the study (low compliance patients) consisted of 478 patients (37.88%) with a low physician’s compliance. [3]. In this group, 42 new fragility fractures (8.79%) were identified.

Conclusion: 26.51% fragility fractures were registered in patients who refused monitoring and treatment. In the group of low compliance patients, 8.73% of new fractures were detected. While in the group of highly compliant patients, only 1.4% of new fractures were registered.

References:

Acknowledgements: NIL

Disclosure of Interests: None Declared.

DOI: 10.1136/annrheumdis-2023-eular.5854

AB1227

MINDFULNESS OF THE RISK OF FRACTURE IN OSTEOPOROSIS AND THERAPEUTIC ADHERENCE

Keywords: Patient reported outcomes, Osteoporosis, Outcome measures

A. M. Lurati1, A. Laria1, P. Faggio1, K. Re1, D. Mazzochi1, M. G. Marrassa1, A. Mazzone1, 2Fornariol Hospital, Rheumatology Unit, Magenta, Italy; 1Legnino Hospital, Internal Medicine Unit, Legnino, Italy

Background: Therapeutic adherence especially in chronic pathologies such as osteoporosis is of enormous importance, the foundation of which is based on close doctor-nurse-patient interaction, functional in informing the patient about the reasons for the proposed treatment and the possible side effects of a therapy that lasts for long periods of time.

Objectives: aim of this longitudinal study was to evaluate whether awareness of one’s own fracture risk calculated using the DeFRA algorithm could improve adherence and persistence in anti-fracture treatment in an Italian population affected by osteoporosis and possibly reduce the fracture risk itself.

Methods: during 2018-2019, 309 menopausal women with osteoporosis (mean age 75 years ± 4.8) were enrolled in the present longitudinal study. The fracture risk was calculated with Defra algorithm and all were prescribed oral anti-osteoporotic therapy for the first time (alendronate 70mg 1 tablet/week or risedronate 35mg 1 tablet/week). Two groups were therefore created: group A (154 subjects) represented by patients managed according to the Standard Clinical Practice and who were NOT given further information about their fracture risk and who were NOT given the risk card; group B (175 subjects) represented by patients who were provided with all the information regarding the risk of fracture according to the variables collected in the DeFra algorithm and who were physically given the fracture risk card (Figure 1). After 18 months the patients had a new DXA densitometric data examined, the DeFra fracture risk was recalculated and a therapy adherence questionnaire, the OS-MMAS (Osteoporosis-Specific Morisky Medication Adherence Scale). Patients with an OS-MMAS score <6 were categorized as “low adherence” otherwise as “high adherence”.

Results: Mean age was not significantly different in the two groups: Group A 75.4±5.7, Group B 74.7±5.7, (p>0.05). The mean DeFra value at baseline was 26.7 and 26.8 in Group A and Group B, respectively (p>0.05), while at the control it was 27.4 and 25.6 (p<0.01). The mean OS-MMAS score was significantly lower in group A than in group B (4.95±2.75 vs 8.25±2.85, p<0.001) (Figure 2 and Figure 3). 38.5% of the subjects fell into the “low adherence” category with an OS-MMAS score <6, 61.5% fell into the “high adherence” category with a score ≥6. We found a significant correlation between the belonging and the punctual values of Defra at 18 months and those of variation of Defra between baseline and 18 months (correlation between belonging to group B and Defra at 18 months -2.74, with the delta values of Defra at 18 months -2.72 respectively, p<0.01). The OS-MMAS score was shown to be correlated to belonging to group B (coefficient Beta 0.5 ±0.001) in a linear regression model including the other variables collected age and Defra value at baseline. The same result was obtained by analyzing the data in terms of “low adherence” and “high adherence”, where having an OS-MMAS score greater than or equal to 6 correlated to belonging to group B and not to age or DeFra score baseline (Ex: B=0.170 95% CI 0.103-0.281, p<0.01) in a binary logistic regression model. In turn, the better OS-MMAS score correlated with the improvement over time of the DeFra fracture risk recalculated at the follow-up visit on the basis of the control DXA data (Spearmann’s Rho -3.95 p<0.001).

Conclusion: The data collected in our study, although preliminary and with obvious limitations related to the smallness of the sample analysed, suggest that a greater awareness on the part of the patient of his or her risk of fracture (in the specific case providing detailed information about the result of the DeFra algorithm included during the baseline evaluation), may be associated with a greater long-term adherence to the suggested therapy and above all with a reduction in the risk of fracture over time, as evidenced by a reduction in the risk of DeFra fracture at the 18-month follow-up.

References: none.

Acknowledgements: NIL

Disclosure of Interests: None Declared.

DOI: 10.1136/annrheumdis-2023-eular.5857