Boehringer-Ingelheim, Consultant of: Boehringer-Ingelheim, Rucscandra Dobrota Speakers bureau: Actelion and Boehringer-Ingelheim, Grant/research support from: Articulm Fellowship, sponsored by Pfizer (2013-2014), Actelion, Amsion, outside the submitted work: Michael Durken, Boehringer Ingelheim, Oyvind Molberg- None declared, Oliver Distler Speakers bureau: 4P-Pharma, Abbvie, Acceleron, Alcimed, Altavant, Amsion, Anxa, AstraZeneca, Baecon, Biade, Bayer, Boehringer Ingelheim, Corbus, CSL Behring, Galdmer, Galapagos, Glemank, Gossamer, Qviva, Horizon, Inventiva, Janssen, Kymera, Lupin, Mediscape, Mercck, Milttenyi Biotec, Mitsubishi Tanabe, Novartis, Prometheus, Redxpharma, Roivant, Sarvik, Sandoz, Topadura, Grant/research support from: Bl, Kymera, Mitsubishi Tanabe.

DOI: 10.1136/annrheumdis-2023-eular.3215

OP0237 USE OF NEUTROPHIL/LYMPHOCYTE AND PLATELET/LYMPHOCYTE RATIOS TO DETECT SYSTEMIC SCLEROSIS-ASSOCIATED INTERSTITIAL LUNG DISEASE

Keywords: Systemic sclerosis, Diagnostic tests, Biomarkers

Background: Intestinal lung disease (ILD) remains a main cause of morbidity and mortality in patients with systemic sclerosis (SSc). New markers to early detection of SSc-ILD are an unmet need [1]. Neutrophil/lymphocyte (NLR) and platelet/lymphocyte (PLR) ratios have emerged as potential biomarkers of systemic inflammation in cancer, cardiovascular disorders, infections and rheumatic diseases [2].

Recently, some studies in South Korea and Turkey have shown correlation of NLR and PLR with erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), disease activity, pulmonary and cutaneous involvement in SSc [3,4]. However, manifestations of SSC present variability in different populations. Could NLR and PLR be used as new biomarkers to detect SSc-ILD in Mexican-Mestizo population?

Objectives: To investigate the usefulness of NLR and PLR to detect SSc-ILD.

Methods: A cross-sectional study, where patients > 18 years of age with a diagnosis of SSc according to EULAR/ACR 2013 criteria and diagnosis of ILD by forced vital capacity (FVC) < 70% and > 5% of affected lung area by diffuse ground-glass opacity or pulmonary fibrosis on high-resolution computed tomography (HRCT) were included. Patients with corticosteroid use, malignancy, iron deficiency anemia and active infections were excluded.

Results: Of 74 patients with SSc 94.6% were women. The mean age [standard deviation (SD)] was 49.8 (14.1) years. The median of disease duration [inter-quartile range quartile 25-75 (IQR)] was 7 (4.7-12) years and subtype of limited cutaneous SSc (p=0.001). For NLR, the cut-off value (COV) was 2.05 and the area under the curve (AUC) was 0.887, with sensitivity, specificity and DA of 97.1%, 71.1% and 81.1% respectively (Figure 1). For PLR, the COV was 184.54 and the AUC was 0.743, with sensitivity, specificity and DA of 58.3%, 89.5% and 74.3%, respectively (Figure 2). A strong correlation with FVC (r=0.527) and EUSTAR activity index (r=0.513) was observed. Moderate correlation with PLR (r=0.696) and affected lung area on HRCT (r=0.654) and moderate correlation with FVC (r=0.502) and EUSTAR activity index (p=0.051). In contrast, PLR only had a weak correlation with EUSTAR activity index (p=0.371; p<0.001). MLRA showed that NLR > 2.05 (OR 5.42, 95% CI 1.38-18.46, p=0.003) remained associated with an increased risk of SSc-ILD.

Conclusion: This study suggests that NLR show better DA than PLR, as well as it can be a useful screening tool and a low-cost biomarker to detect SSc-ILD in Mexican-Mestizo patients. Also, NLR is associated with an increased risk of SSc-ILD and present a good correlation with affected lung area on HRCT, FVC and disease activity. However, these observations must be confirmed in larger and prospective studies.

REFERENCES:

Disclosure of Interests: None Declared.

DOI: 10.1136/annrheumdis-2023-eular.1582

OP0238 IMMUNOSUPPRESSION WITH TARGETED DMARDS REDUCES MORBIDITY AND MORTALITY IN PRE-CAPILLARY PULMONARY HYPERTENSION ASSOCIATED WITH SYSTEMIC SCLEROSIS: A EUSTAR ANALYSIS

Keywords: bDMARD, Systemic sclerosis, Lungs

Background: In the last years, research has focused on the characterization of pre-capillary pulmonary hypertension (pPH) as a potential candidate of systemic sclerosis (SSc), mainly due to the positive outcomes of immunosuppression with targeted drugs in clinical practice and randomized clinical trials [1-5]. The aim of this study was to evaluate the effectiveness of immunosuppression with targeted DMARDs (bDMARD) in a large cohort of SSc-pPH patients included in the EUSTAR database.

Methods: Patients included in the EUSTAR registry with SSc-pPH (primary or secondary) and started bDMARD therapy before or after disease diagnosis were included. The primary endpoint was defined as the time to death, transplantation or the occurrence of other events of interest (complications, hospitalization, VAQ, death, etc.) through the EUSTAR cohort. Time to event was defined as the time from first bDMARD treatment until the event of interest. An event-related Cox model was used to estimate the hazard ratio (HR) and its 95% confidence interval (CI) adjusted for age, gender, disease duration, smoking status, presence of antinuclear antibodies, and comorbidities related to pPH.

Results: At the beginning of the study, the database included 16,612 patients, of which 1,237 (7.4%) had SSc-pPH. Among them, 657 (53.5%) received an immunosuppressive treatment with bDMARDs. The median time between disease diagnosis and immunosuppressive treatment was 3.4 years (IQR 1.5-7.6). The median age at immunosuppressive treatment was 52.4 years (IQR 45.3-60.8). The median disease duration at immunosuppressive treatment was 2 years (IQR 1.1-3.5). The most used bDMARDs were rituximab (29.2%) followed by tocilizumab (22.2%) and abatacept (13.8%). The primary endpoint occurred in 260 patients (39.7%) during a median follow-up of 5.4 years (IQR 3.3-7.5). The multivariate analysis showed that the use of bDMARDs was associated with a lower risk of the primary endpoint (HR 0.67, 95% CI 0.53-0.85, p=0.001).

Conclusion: Immunosuppression with targeted DMARDs (bDMARD) reduces the risk of morbidity and mortality in pre-capillary pulmonary hypertension associated with systemic sclerosis (SSc).

Disclosure of Interests: None Declared.

DOI: 10.1136/annrheumdis-2023-eular.3215

Acknowledgements: All members of Rheumatology Service in Hospital de Especialesidades, Centro Médico Nacional de Occidente, IMSS, Guadalajara, Mexico.
of America; 18Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Department of Internal Medicine 3-Rheumatology and Immunology, Erlangen, Germany; 19Rambam Health Care Campus, B. Shine Rheumatology Institute, Haifa, Israel; 20Sant Pau Art Nouveau Site, Rheumatology, Barcelona, Spain; 21University of Padova, Rheumatology Unit, Department of Clinical and Experimental Medicine, Padova, Italy; 22Ghent University Hospital, Department of Rheumatology, Gent, Belgium; 23Ghent University Hospital, Department of Internal Medicine, Gent, Belgium; 24Vlaams Instituut voor Biotechnologie, Inflammation Research Center (IRC), Unit for Molecular Immunology and Inflammation Research, Gent, Belgium; 25University College London Medical School-Royal Free Campus, Centre for Rheumatology, London, United Kingdom; 26Inselspital, Bern University Hospital, Department of Rheumatology and Immunology, Bern, Switzerland; 27University of Verona, Rheumatology Unit, Department of Medicine, Verona, Italy; 28University of Bari Aldo Moro, Rheumatology Unit - DiMeReU, Bari, Italy; 29Bordeaux University - Bordeaux University Hospital, Department of Rheumatology, UMR5164 ImmunocConcept, Bordeaux, France; 30Nippon Medical School Hospital, rheumatology, Tokyo, Japan; 31Paris 5 University, Cochin Hospital, Rheumatology A, Paris, France; 32Hospital of University of Occupational and Environmental Health, Rheumatology, Kitakyushu, Japan; 33Polters University Hospital, Department of Internal Medicine, INSERM U1313, Polters, France; 34Sapienza University of Rome, Department of Translational and Precision Medicine, Roma, Italy; 35Clinical Hospital Dr. Ion Cantacuzino, Department of Internal Medicine and Rheumatology, București, Romania; 36University of Leeds, Raynaud’s and Scleroderma Programme, Institute of Rheumatic and Musculoskeletal Medicine, and Biomedical Research Centre, Leeds, United Kingdom; 37Walter and Eliza Hall Institute Unit, Hamilton, New Zealand; 38San Raffaele Tor Vergata Universitario Monserrato “Duilio Casula”, Rheumatology, Monserrato, Italy; 39Hospital de Santa Maria, Serviço de Reumatologia e Doenças Ósseas Metabólicas, Lisboa, Portugal; 40Hospital Fernando Fonseca, Systemic Immunomediated Diseases Unit, Department of Medicine IV, Amadora, Portugal; 41University of Pécs Medical School, Department of Immunology and Rheumatology, Pécs, Hungary; 42School of Medicine, University of Zagreb, Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, Zagreb, Croatia; 43University of Foggia - Department of Economics, Rheumatology Clinic – Department of Medical and Surgical Sciences, Foggia, Italy; 44Sapienza University of Rome, Department of Clinical, Internal and Cardiovascular Specialties, Roma, Italy; 45Lund University, Section of Rheumatology, Department of Clinical Sciences, Lund, Sweden; 46Stanford University School Medicine, Division of Immunology and Rheumatology, Palo Alto, United States of America; 47Hospital de Clínicas de la Universidad Federal do Parana, Rheumatology, Curitiba, Brazil; 48Carol Davila University of Medicine and Pharmacy, Department of Internal Medicine and Rheumatology - St. Maria Hospital, Bucharest, Romania; 49Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Reumatologie, Cluj-Napoca, Romania; 50Rutgers University Medical School, Rheumatology Unit, First Propaedeutic and Internal Medicine, Athens, Greece; 51Meir Medical Center, Rheumatology, Kefar Sava, Israel; 52Rutgers Robert Wood Johnson Medical School, Department of Medicine, Division of Rheumatology, New Brunswick, United States of America; 53Marienhospital Stuttgart, Department of Rheumatology, Stuttgart, Germany; 54Tübingen University Hospital, Center for Multidisciplinary Rheumatology and Autoimmune Diseases (INDIRA), Tübingen, Germany; 55Marche Polytechnic University, Clinica Medica, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy; 56Geneva University Hospitals and University of Geneva, Division of Rheumatology, Internal Medicine Specialties, Genève, Switzerland; 57University Hospitals Leuven, Division of Rheumatology, Leuven, Belgium; 58The University of Manchester, Northen Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; 59Fondazione I.R.C.C.S. Pollicino San Matteo, Unità Operativa e Cattedra di Reumatologia, Pavia, Italy

Background: Pre-capillary pulmonary hypertension (pulmonary hypertension) affects 9-15% of patients with systemic sclerosis (SSc) and may be associated with interstitial lung disease (ILD) of variable extent. Immunosuppressants (IMS) are standard of care for treating ILD, skin or musculoskeletal manifestations in SSc. However, their beneficial effect on pPH remains unclear.

Objective: To determine whether exposure to IMS in SSc-pPH affects morbidity and mortality in the EUSTAR cohort.

Methods: In the approved EUSTAR project CP11, we included SSC patients with pPH (mPAP ≥21 mmHg, PVR ≤15 mmHg + 75% vs PVR ≤2) with data on IMS (cSMDARs - prednisone ≥10mg/d, cyclophosphamide, mycophenolate mofetil, azathioprine, methotrexate; targeted therapies: abatacept, rituximab, tocilizumab, TNFI, JAKI), pulmonary arterial hypertension (PAH) medications (bosentan, macitentan, ambrisentan, sildenafil, tadalafil, riociguat, selexipag, prostanoids) and at least 3 months follow-up after pPH diagnosis. We considered exposure to a drug if it was ongoing at or prescribed after pPH diagnosis and administered for at least 30 days. Patients were clustered into group 1 or group 3 pPH based on ILD presence on HRCT and FVC ≤70%, as proposed in the INCREASE trial. The morbidity-mortality outcome was defined by the first event between death or pPH worsening (following the SERAPHIN trial: one of ≥15% 6MWD decrease, worsening of NYHHA class, onset of right heart failure, additional PAH medication, starting iv-sc prostanoids, lung transplantation, atrial septostomy). We evaluated the association between IMS and time to first event with a multiple Cox regression model for time dependent covariates, with robust Sandwich variance estimate and backward selection. The baseline confounders were chosen on experts’ opinion and included SSc-related risk factors for mortality or IMS prescription (sex, age, diffuse skin subtype, renal crisis, digital ulcers, muscle weakness, joint synovitis, ILD on HRCT, LVEF%, FVC%, DLCO%) and PAH risk stratification parameters (mPAP, increased INRNP/TnpBNP, NYHHA class II, reduced cardiac index, reduced 6MWD). PAH medications (none, mono, double or triple therapy) were also included as time-dependent confounder.

Results: 55 SSc-pPH-PAH patients from 54 EUSTAR centers were included (18% males, age 53±11 years, disease duration 11±8 years, 29% diffuse skin subset, 60% ILD on HRCT; 377 (50%) received IMS [365 (47%) cSMDARs, 68 (9%) targeted therapies] and 642 (85%) PAH medications. Patients treated with IMS had more frequently ILD (78 vs 43%), diffuse skin (41 vs 18%), joint (16 vs 7%) and muscle (22 vs 10%) involvement. In 2.9 (12.5-4.4) years median follow-up, 546 (70%) patients developed a morbidity-mortality event. While overall IMS exposure did not associate with the outcome, targeted therapies were associated with reduced risk of mortality-mortality (HR 0.59 [95% CI 0.36-0.96], p=0.04; Figure 1a).

Conclusion: When clustering into group 1 [n=561, 40% IMS, n=32 (6%) targeted therapies] or group 3 [n=194, 80% IMS, n=36 (19%) targeted therapies], less morbidity-mortality events were recorded for group 1 (69 vs 81%). Despite the rarer use, the protective effect of targeted therapies for morbidity-mortality was confirmed in group 1 (HR 0.24, 95% CI 0.02-0.64, p=0.01, Figure 1b) but not in group 3 (Figure 1c). When looking at specific target therapies, a risk reduction for the morbidity-mortality outcome was noted for tocilizumab [in the whole cohort (n=163, 66% cSMDARs, 18% targeted therapies) one of ≥15% 6MWD decrease, worsening of NYHA class, onset of right heart failure, additional PAH medication, starting iv-sc prostanoids, lung transplantation, atrial septostomy]. We evaluated the association between IMS and time to first event with a multiple Cox regression model for time dependent covariates, with robust Sandwich variance estimate and backward selection. The baseline confounders were chosen on experts’ opinion and included SSc-related risk factors for mortality or IMS prescription (sex, age, diffuse skin subset, renal crisis, digital ulcers, muscle weakness, joint synovitis, ILD on HRCT, LVEF%, FVC%, DLCO%) and PAH risk stratification parameters (mPAP, increased INRNP/TnpBNP, NYHHA class II, reduced cardiac index, reduced 6MWD). PAH medications (none, mono, double or triple therapy) were also included as time-dependent confounder.

Acknowledgements: On behalf of the EUSTAR collaborators.

Disclosure of Interests: Cosimo Bruni Speakers bureau: Eli-Lilly, Consultant of: Boehringer Ingelheim, Grant/research support from: Gruppo Italiano Lotta alla Sclerodermia (GILS), European Scleroderma Trials and Research Group (EUSTAR), Foundation for research in Rheumatology (FOREUM), Scleroderma Clinical Trials Consortium (SCTC). Educational grants from AbbVie, Lorenzo Totani: None declared, Håvard Fretheim Speakers bureau: Boehringer Ingelheim, Consultant of: Bayer, Grant/research support from: GSK, Actelion, Yannick Weber: None declared, Eric Hachulla Speakers bureau: Johnson & Johnson, GlaxoSmithKline, Roche-Chugui, Otsuka, Consultant of: Bayer, Boehringer Ingelheim, GlaxoSmithKline, Johnson & Johnson, Roche-Chugui, Sanofi-Genzyme, Novartis, Grant/research support from: CSL Behring, GlaxoSmithKline, Johnson & Johnson, Roche-Chugui, Sanofi-Genzyme, Mitsubishi Tanabe, Dilla Giuglioli: None declared, Paolo Airo Speakers bureau: Bristol Myers Squibb, Boehringer Ingel- heim, Roche, Novartis, CSL Behring Janssen- Cilag, Consultant of: Bristol Myers Squibb, Boehringer Ingelheim, Roche, Novartis, CSL Behring Janssen- Cilag, Grant/research support from: Bristol Myers Squibb, Boehringer Ingelheim, Roche, Novartis, CSL Behring Janssen- Cilag, Elise Siegert: None declared, Ulf Müller-Ladner: None declared, Marco Matucci-Cerinic Speakers bureau: Boehringer Ingelheim, GlaxoSmithKline, Otsuka, Consultant of: Bayer.
Does early immunosuppressive therapy prevent systemic sclerosis associated interstitial lung disease?

Keywords: Systemic sclerosis, Lungs, Epidemiology

A. Velauthapillai1, M. Bootsma1, C. Bruni2, O. Distler2, C. Van den Ende1, M. Vonk1,3, R. W. W. de Jongh1, A. Velauthapillai: None declared, Merle Bootsma: None declared, Cosimo Bruni Speakers bureau: Eli Lilly, Consultant of: Eli Lilly, Grant/research support from: Gruppo Italiano Lotta alla Sclerosi Poliarticolare (EUSTAR), Foundation for research in Rheumatology (FOREUM), Sclerodermia Clinical Trials Consortium (SCCTC), Educational grants from Abbvie, Lilly, Merck, Pfizer, Roche, Consultant of: ABBvie, Janssen, Boehringer-Ingerlheim, Grant/research support from: Actelion, Biogen, Boehringer, CSL Behring, Corbus, Galapagos, Mitsubishi, Medscape, Merck, Pfizer, Roche, Consultant of: Actelion, Biogen, Boehringer, CSL Behring, Corbus, Galapagos, Mitsubishi, Medscape, Merck, Pfizer, Roche, Gabriela Riekmasten: None declared, Carmen Pilar Simeon Aznar: None declared, Jeska de Vries-Bouwstra Speakers bureau: ABBVie, Biogen, Boehringer-Ingelheim, Consultant of: ABBVie, Biogen, Boehringer-Ingelheim, Grant/research support from: ABBVie, Biogen, Boehringer-Ingelheim, Janssen-Cilag, Galectos, Roche, Leesly Ann Sakeketo: None declared, Joeg Distler: None declared, Alexandra Baltay-Gurman: None declared, Ivan Castelví: None declared, Elisabetha Zanatta: None declared, Vanessa Smith: None declared, Christopher P Denton: None declared, Britta Maurer Speakers bureau: Boehringer Ingelheim, GSK, Novartis, Consultant of: Novartis, Boehringer Ingelheim, Janssen-Cilag, Grant/research support from: ABBVie, Protagon, Novartis Biomedical. congress support from Medtalk, Pfizer, Roche, Actelion, Mepha, and MSD, Alessandro Gollo Speakers bureau: Galapagos, Eli Lilli, Consultant of: Galapagos, Sandoz, Novartis, Florence Iannone: None declared, Lorenzo Dagna Speakers bureau: Novartis and SOBI, Consultant of: Abbvie, AstraZeneca, Biogen, Boehringer-Ingelheim, BMS, Eli Lilli, Galapagos, GSK, Janssen, Kiniksa Pharmaceuticals, Novartis, Pfizer, SOBI, Grant/ research support from: BMS, Celltrion, Kiniksa pharmaceuticals, Pfizer and SOBI, Marie-Elise Truchetet: None declared, Masataka Kusawara: None declared, Yannick Allanore Consultant of: Abbvie, AstraZeneca, Bayer, Boehringer-Ingelheim, Mylan, Janssen, Medsciences, Prometheus, Sanofi, Roche, Grant/research support from: Alpine Immunosciences, Medsciences, OSE Immunotherapeutics, Yoshiya Tanaka: None declared, Mickael Martin Speakers bureau: Boehringer Ingelheim, Edoardo Rosato: None declared, Ana Maria Gheorgiu Speakers bureau: Sandoz, Boehringer Ingelheim, Ewopharma, Abbvie, Consultant of: Sandoz, Boehringer Ingelheim, Ewopharma, Abbvie, Francesco Del Galdo: None declared, Kamal Solarinki: None declared, ALESSANDRA VACCIA: None declared, Catarina Resende: None declared, Susana Vieira: None declared, László Czirják: None declared, Marko Bariesic: None declared, Francesco Paolo Cantatore: None declared, Valeria Ricciere: None declared, Kristoffer Andreason: None declared, Lorinda Chung: None declared, CAROLINA SOUZA MULLER: None declared, Daniela Opris-Belinski Speakers bureau: Abbvie, Amgen, AstraZeneca, Boehringer Ingelheim, Janssen, Novartis, Simona Rednic: None declared, Petros Smakakis: None declared, Yair Levy: None declared, Vivian Hsu: None declared, Stefan Heitmann: None declared, Jörg Hennes Speakers bureau: Abbvie, Boehringer Ingelheim, GSK, BMS, Janssen, Novartis, Pfizer, UCB, Consultant of: Abbvie, Boehringer Ingelheim, GSK, BMS, Janssen, Novartis, Pfizer, UCB, Gianluca Moroncini: None declared, Michele Judicini: None declared, Ellen De Langhe: None declared, Ariane Herrick: None declared, Carlomaurizio Montuccio: None declared, Anna-Maria Hoffmann-Vold Speakers bureau: ehringer Ingelheim, Janssen, Medscape, Merck Sharp & Dohme and Roche, Consultant of: ARXX, Boehringer Ingelheim, Genentech, Janssen, Medscape, Merck Sharp & Dohme and Roche, Grant/research support from: Boehringer Ingelheim, Janssen, Oliver Distler Speakers bureau: 4P-Pharma, Abbvie, Acceleron, Alcimed, Alcimed, Altavant, Amgen, AnaMar, Arxx, AstraZeneca, Blade, Bayer, Boehringer Ingelheim, Corbus, CSL Behring, Galderma, Galapagos, Glenmark, Gossamer, IQvia, Kymera, Lupin, Medscape, Merck, Menilteny Biotec, Mitsubishi Tanabe: Novartis, Prometheus, Redxpharma, Roivant and Topadur in the area of potential treatments of scleroderma and its complications,, Consultant of: 4P-Pharma, Abbvie, Aceleror, Alcimed, Alcimed, Altavant, Amgen, AnaMar, Arxx, AstraZeneca, Blade, Bayer, Boehringer Ingelheim, Corbus, CSL Behring, Galderma, Galapagos, Glenmark, Gossamer, IQvia, Kymera, Lupin, Medscape, Merck, Menilteny Biotec, Mitsubishi Tanabe: Novartis, Prometheus, Redxpharma, Roivant and Topadur in the area of potential treatments of scleroderma and its complications,, Consultant of: 4P-Pharma, Abbvie, Aceleror, Alcimed, Alcimed, Altavant, Amgen, AnaMar, Arxx, AstraZeneca, Blade, Bayer, Boehringer Ingelheim, Corbus, CSL Behring, Galderma, Galapagos, Glenmark, Gossamer, IQvia, Kymera, Lupin, Medscape, Merck, Menilteny Biotec, Mitsubishi Tanabe: Novartis, Prometheus, Redxpharma, Roivant and Topadur in the area of potential treatments of scleroderma and its complications. Research grants: Kymera, Mitsubishi Tanabe.

doi: 10.1136/annrheumdis-2021-eular.2018

Background: Systemic sclerosis (SSc) is an autoimmune disease characterized by a triad of inflammation, vascular damage and fibrosis. Interstitial lung disease (ILD) is a major contributor to impaired quality of life and a leading cause of death in these patients. While recent studies reported a favorable effect on disease course when starting immunosuppressive (IMS) therapy in mild and moderate ILD, no definite evidence of a preventive mechanism of IMS therapy for ILD onset is established (1, 2).

Objectives: The objective of our study was to explore the association between timing of start IMS therapy and the development of ILD.

Methods: A combined cohort was created from the EUSTAR database and Nijmegen Systemic Sclerosis cohort, including patients: 1) aged 18 years or older 2) treated with IMS (i.e. mycophenolate mofetil, metoxetur, cyclophosphamide and rituximab) after SSc diagnosis 3) negative for signs ofILD on high-resolution CT (HRCT) at or within 2 months after start treatment and 4) no prior treatment with biological or antifibrotic in the preceding years. Data between start of first IMS treatment and five years follow-up were analysed. Disease duration (time between first non-Raynaud phenomenon and start IMS) was dichotomized into early and late treatment using a cut-off point of 3 years. ILD-free survival (absence of HRCT confirmed ILD diagnosis) was assessed with unadjusted Kaplan-Meier analysis on complete cases and a Cox proportional hazard analysis on imputed data adjusting for confounders.

Results: We identified 1037 patients meeting the eligibility criteria. The early treatment group (n=539, 52 %) showed a higher prevalence of male sex, dif- fuse cutaneous SSc (dcSSc, 52.9% vs 36.4%, p= 0.001), anti-topoisomerase I antibody positivity (ATA, 51.0% vs. 42.5%, p= 0.01), anti-RNA polymerase III antibody positivity (ARA, 11.7% vs. 5.4%, p=0.009) and elevated C-reactive protein levels (30.6% vs. 22.6%, p=0.03). Further, patients in the early group had a higher modified Rodnan skin score (mRSS, mean(SD) 13.9(7.9) vs. 9.7(8.9), p= 0.001). The incidence of ILD was 46.1% after mean(SD) 3.6(14) years of treatment and not significantly different between the groups (mean(95% CI): early: 47% (43-51) vs. late: 45%(40-50), p= 0.64). The unadjusted Kaplan-Meier survival curve on complete cases (Figure 1) shows no differences in ILD-free survival rates between the early and late treatment group. The hazard ratio for ILD in the early treatment group was 1.11 (95% CI: 0.91-1.36) adjusting for gender, dcSSc, Caucasian ethnicity, ATA, ARA, age, forced vital capacity and diffusing capacity for carbon monoxide at baseline.

Conclusions: Our finding did not confirm a preventive role of early vs. late timing of IMS therapy on ILD development. However, our findings should be interpreted with caution, considering the high inflammatory, ATA-positive enriched nature of the cohort selected, as well as confounding by indication, which cannot be ruled out also after adjusting for other confounding factors.

References:

Disclosure of Interests: Arthiha Velauthapillai: None declared, Merle Bootsma: None declared, Cosimo Bruni Speakers bureau: Eli Lilly, Consultant of: Eli Lilly, Grant/research support from: Gruppo Italiano Lotta alla Sclerodermia (GISL), European Scleroderma Trials and Research Group (EUSTAR), Foundation for research in Rheumatology (FDRREUM), Sclerodermato Clinical Trials Consortium (SCCTC), Educational grants from Abbvie, Lilly, Distler Speakers bureau: 4P-Pharma, Abbvie, Acceleron, Alcimed, Eli Lilly, Alcimed, Amgen, AnaMar, Arxx, AstraZeneca, Blade, Bayer, Boehringer Ingelheim, Corbus, CSL Behring, Galderma, Galapagos, Glenmark, Gossamer, IQvia, Kymera, Lupin, Medscape, Merck, Menilteny Biotec, Mitsubishi Tanabe: Novartis, Prometheus, Redxpharma, Roivant and Topadur in the area of potential treatments of scleroderma and its complications, Research grants: Kymera, Mitsubishi Tanabe.

Figure 1. Kaplan-Meier curve of ILD-free survival estimates. Survival rate with 95% confidence interval is shown for the early and late treatment group.

Conclusion: Our finding did not confirm a preventive role of early vs. late timing of IMS therapy on ILD development. However, our findings should be interpreted with caution, considering the high inflammatory, ATA-positive enriched nature of the cohort selected, as well as confounding by indication, which cannot be ruled out also after adjusting for other confounding factors.