involvement and Cyclophosphamide in patients with lung involvement followed by Azathioprine or Rituximab maintenance, one patient was induced and maintained with low dose rituximab. Details of second-line therapy was not available for three patients. The mean ESSDAI and ESSPRI scores were high. None of our patients had Sjogren’s syndrome who was responsible for the project starting.

Conclusion: pSS patients with myositis had a younger age of onset with active Disease and High ESSDAI and ESSPRI scores. Myositis was the presenting manifestation in most, the proportion of patients with lung involvement in pSS myositis was much higher than is usually seen in patients with pSS and should prompt the clinician to look for clinical/subclinical lung involvement in pSS myositis patients. The Response to therapy was usually good. Unlike other cohorts, we didn’t find any IBM in our set of patients – this may be due to referral bias or the rarity of IBM in the Indian population.

Table 1. Characteristics of pSS Myositis patients

| N | Age (mean±SD|Range)| Presenting Manifestation | Follow Up duration in years (mean±SD|Range)| Schirmer’s Positive | UFM | LA biopsy | ANA | Ro52 | Ro60 | La | Constitutional features | Lympathadenopathy | Parotid/ Glandular enlargement | Arthritis/Arthropagia | Rash/purpura | ILD | Renal | Neuropathy | Hematological | Fibromyalgia | ESSDAI (mean±SD) | ESSPRI (mean±SD) | Treatment Details | Pulse Steroids | Trm/kg | 0.5 mg/kg | < 0.5 mg/kg | Second line Immunosuppressants | Methotrexate | Cyclophosphamide | Azathioprine | Rituximab |
|-----|-------------|------|--------------------------|---------------------------------|---------------------------------|----------------|---|-----------|-----|------|------|-----|----------------------|-----------------|---------------------------|------------------|------------|----|---------|---------|----------------|-------------|---------------|------------|----------|
| 12 | 36.8±3 | 12.16(18-51) | females | 11 | 91.67 | 11 | 95 | 4 | 11 | 91.67 | 91.67 | 4 | 11 | 2 | 18 | 8 | 66.67 | 5 | 41.67 | 8.33 | 4 | 5 | 41.67 | 3 | 16.67 |
| 2 | 16.67 | 0.5 mg/kg | 2 | 1 | 8.33 | 4 | 3 | 16.67 | 25 | 16.67 | 16.67 | 3 | 16.67 | 5 | 16.67 | 3 | 33.33 | 2 | 41.67 | 8.33 | 5 | 5 | 41.67 | 3 | 16.67 |
| 3 | 25 | < 0.5 mg/kg | 1 | 7 | 58.33 | 7 | 25 | 25 | 25 | 25 | 25 | 2 | 25 | 2 | 25 | 2 | 8.33 | 2 | 8.33 | 8.33 | 2 | 2 | 8.33 | 2 | 8.33 |

Figure 1. Demographic, Clinical and Serological data of patients with Sjögren's Myositis (created using biorender.com)

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2023-eular.4287

AB0671 LONGITUDINAL ASSESSMENT OF HAND AND WRIST BONE DESTRUCTION BY ULTRASOUND, AND ITS ASSOCIATION WITH DISEASE ACTIVITY IN PRIMARY SJÖGREN’S SYNDROME

Keywords: Ultrasound, Inflammatory arthritides, Sjögren syndrome

A. Silva Franco1, I. Mural1, T. Yang1, L. Peixoto Sales1, L. Guedes1, S. Pasoto1, C. Figueiredo1, R. M. Pereira1,1, Faculdade De Medicina Da USP, Rheumatology, São Paulo, Brazil

Background: Primary Sjögren’s syndrome (pSS) is a chronic systemic inflammatory autoimmune disease primarily affecting the exocrine glands (1). Joint damage is the main extra-glandular manifestation, usually described in 11% of patients as non-erosive polyarthritis of small joints, mainly of the upper limbs (2). Although articular bone erosion is a rare finding on hands’ radiography, hand and wrist ultrasound (US) is an emerging technology in the rheumatology field used for diagnosis and follow-up disease activity through the assessment of bone articular erosions, synovitis and tissue power doppler (3).

Objectives: To evaluate joint damage by hand and wrist ultrasound, and its association with disease activity in primary Sjögren’s syndrome patients in a longitudinal setting.

Methods: Ninety-seven consecutive pSS patients according to the American College of Rheumatology (ACR) and European Alliance of Associations for Rheumatology (EULAR) criteria without meeting the ACR criteria (1987) for rheumatoid arthritis were evaluated by hand and wrist ultrasound and clinical activity disease index previously by our group (3). Twelve patients of this initial evaluation were followed with hand and wrist ultrasound and clinical activity disease index. Disease activity was assessed by EULAR Sjögren’s Syndrome Disease Activity Index (ESSDAI). The US was performed by one expert blinded. Data were analyzed by Wilcoxon signed-rank test. Significance level was set at P<0.05.

Results: All patients were female and 8 (66.6%) were white. The time between the first and the second evaluation was 9.5 ± 1.6 years. At the first evaluation, only 1 (8.3%) patient had wrist erosion, 5 (41.6%) patients had synovitis and 4 (33.3%) patients had tissue power doppler in the US. The mean ESSDAI was 6.83 ± 5.70. At the second evaluation, 5 (41.6%) patients had wrist erosion (P=0.059), 10 (83.3%) patients had synovitis (P=0.010) and 7 (58.3%) patients had tissue power doppler in the US (P = 0.014). The mean ESSDAI was 2.33 ± 4.05 (P = 0.022). After the follow-up period, despite the improvement in the disease activity score, there was an increase in the number of erosions, mainly of the wrists, presence of tissue power doppler and synovitis.

Conclusion: This study describes a longitudinal evaluation of a small sample size of pSS. The findings show a worsening of joint assessments despite low-activity disease, indicating possible local inflammation in addition to systemic involvement.

REFERENCES:

Acknowledgements: Our acknowledgement to Prof. Dr Rosà MR Pereira (in memorian) who was responsible for the project starting.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2023-eular.4584

AB0672 DETECTION OF MACROPHAGE MIGRATION INHIBITORY FACTOR IN SYSTEMIC LUPUS ERYTHEMATOSUS PATIENTS COMPLAINING PAINFUL DISTURBANCES: A SINGLE CENTER STUDY

Keywords: Systemic lupus erythematosus, Pain, Biomarkers

C. Pirone1, F. Ceccarelli1, T. Colasanti1, E. Galasso2, V. Orefice1, C. Galosi1, G. La Mantia1, G. Olivieri1, L. Picciarelli1, P. Falco2, G. Di Pietro2, F. Spinelli1, S. Truglia1, C. Alessandri1, A. Trinui1, F. Conti1,1 Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Universita di Roma, Rome, Italy;1UCi di Neurofisiopatologia e Malattie Neuromuskulari, Dipartimento di Neuroscience umane, Sapienza Universita di Roma, Rome, Italy

Abstract: The aim of the study is to evaluate if the expression of MIF in the synovial fluid is associated with clinical characteristics and pain in a population of SLE patients.