The 2022 EULAR/ACR points to consider at the early stages of diagnosis and management of suspected haemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS)

Bita Shakoory,1 Ashley Geerlinks,2,3 Marta Wilejto,3 Kate Kernan,4 Melissa Hines,5 Michele Romano,6 David Piskin,2,7,8 Angelo Ravelli,3,9 Rashmi Sinha,10 Daniel Aletaha,1,11 Carl Allen,12 Hamid Bassiri,13 Edward M Behrens,14 Joseph Carcillo,4 Linda Car,2 Winn Chatham,15 Jeffrey I Cohen,16 Randy Q Cron,17 Erik Drewniak,18 Alexei A Grom,19 Lauren A Henderson,20 Annacarin Horne,19 Michael B Jordan,2 Kim E Nichols,19,22 Grant Schulte,19,10 Sebastiaan Vastert,23 Erkan Demirkaya,6 Raphaela Goldbach-Mansky,1 Fabrizio de Benedetti,24 Rebecca A Marsh,2 Scott W Canna,14 HLH/MAS task force

Handling editor Mary K Crow

► Additional supplemental material is published online only. To view, please visit the journal online (http://doi.org/10.1136/ard-2023-224123).

For numbered affiliations see end of article.

Correspondence to Dr Raphaela Goldbach-Mansky, Translational Autoinflammatory Disease Section, NIAID/NIH, Bethesda, MD 20892, USA; raphaela.goldbach-mansky@nih.gov, Dr Fabrizio de Benedetti, Ospedale Pediatrico Bambino Gesú, Rome, IT-00165, Italy; fabrizio.debenedetti@obg.net, Dr Rebecca A Marsh, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; rebecca.marsh@chmc.org and Dr Scott W Canna, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; cannas@chop.edu

AG, MW and KK contributed equally.

This article is published simultaneously in Arthritis & Rheumatology.

Received 6 March 2023
Accepted 27 April 2023
Published Online First
24 July 2023

TZ Check for updates

© Author(s) (or their employer(s)) 2023. No commercial re-use. See rights and permissions. Published by BMJ.

ABSTRACT

Objective Haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening systemic hyperinflammatory syndromes that can develop in most inflammatory contexts. They can progress rapidly, and early identification and management are critical for preventing organ failure and mortality. This effort aimed to develop evidence-based and consensus-based points to consider to assist clinicians in optimising decision-making in the early stages of diagnosis, treatment and monitoring of HLH/MAS.

Methods A multinational, multidisciplinary task force of physician experts, including adult and paediatric rheumatologists, haematologist/oncologists, immunologists, infectious disease specialists, intensivists, allied healthcare professionals and patients/families, formulated relevant research questions and conducted a systematic literature review (SLR). Delphi methodology, informed by SLR results and questionnaires of experts, was used to generate statements aimed at assisting early decision-making and optimising the initial care of patients with HLH/MAS.

Results The task force developed 6 overarching statements and 24 specific points to consider relevant to early recognition of HLH/MAS, diagnostic approaches, initial management and monitoring of HLH/MAS. Major themes included the simultaneous need for prompt syndrome recognition, systematic evaluation of underlying contributors, early intervention targeting both hyperinflammation and likely contributorg factors, careful monitoring for progression/complications and expert multidisciplinary assistance.

Conclusion These 2022 EULAR/American College of Rheumatology points to consider provide up-to-date guidance, based on the best available published data and expert opinion. They are meant to help guide the initial evaluation, management and monitoring of patients with HLH/MAS in order to halt disease progression and prevent life-threatening immunopathology.

INTRODUCTION

Haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening systemic hyperinflammatory syndromes characterised by fever, elevated ferritin and other markers of systemic inflammation, inappropriate low blood cell counts, disseminated intravascular coagulopathy, hepatitis, central nervous system (CNS) inflammation and high risk for progression to multiple organ dysfunction, shock and often death.1 The term HLH originated as a pathological description in young children, and although it predates the discovery of PRF1 deficiency or other causal genes, it is often still used to imply a ‘primary’ genetic defect. MAS typically arises as a complication of rheumatic diseases like systemic juvenile idiopathic arthritis (sJIA) or systemic lupus erythematosus (SLE). The current, more broad HLH definition includes MAS among the causes of ‘secondary’ HLH.2 The task force (TF) agreed to refer to the whole spectrum of primary and secondary HLH as ‘HLH/MAS’. HLH/MAS can occur in any age group, and typically develops in the setting of infectious, malignant or rheumatological diseases, or less commonly as a manifestation of underlying genetic inborn errors of immunity (IEI) that predispose to hyperinflammation. Early identification and intervention can prevent organ failure and death. Nevertheless, practice patterns in recognising and managing these conditions vary widely.3

The scope of terms such as HLH, MAS, ‘cytokine storm syndrome’, ‘hyperinflammation’, cancer immunotherapy-related ‘cytokine release syndrome (CRS),’ ‘hyperferritinemiacapssed-induced multiorgan dysfunction’ or SARS-CoV2-associated ‘multisytem inflammatory syndrome of children or adults’ may overlap such that multiple may reasonably apply to the same patient.4 Confusion regarding these terms and the proper boundaries of their application can have unintended consequences (eg, primary HLH treatment protocols are rarely indicated in the MAS subset of secondary HLH).
The TF agreed to define and use the term HLH/MAS to encompass a recognisable pattern of clinical findings associated with these syndromes (as discussed in Table 1). The TF defined systemic hyperinflammation as a state of excessive immune activation at risk of progression to HLH/MAS. Additionally, the TF identified three categories of contributors to the development of HLH/MAS: genetic causes of HLH/MAS, predisposing conditions (eg, sJIA, lymphoma, certain metabolic conditions) that increase susceptibility and acute triggers (eg, infections, immunotherapies).

Several important collaborative efforts have shaped the current approach to the diagnosis and management of HLH and MAS. The Histiocyte Society, and later rheumatology consortia, developed and refined classification criteria to define HLH or MAS. Subsequent diagnostic tools like the HScore and MS score provided more continuous measures. Several groups have developed and published consensus-based management documents that provide context-specific recommendations (see Table 2).

There remains an unmet need for guidance during the early stages of HLH/MAS: a period between when suspicion first arises and when an underlying aetiology has been established. Early HLH/MAS can be highly variable between patients, and often involves rapid changes within the same patient. Patients may not fully meet relevant criteria, their diagnostic workup may be evolving and their condition may be rapidly deteriorating. Nevertheless, it is precisely at these early timepoints where appropriate interventions may have the best chance of preventing the worst outcomes. To address this need, an international multidisciplinary TF developed consensus-based and evidence-based guidance statements. Although collectively HLH/MAS is not rare, these guidance statements are termed points to consider (PTC) to recognise the limitations of the evidence supporting them. These PTC target a broad range of frontline, primary care and subspecialty providers and are meant to assist them in recognising HLH/MAS, identifying its contributors, intervening despite diagnostic ambiguity and monitoring for progression and organ damage.

METHODS

The American College of Rheumatology (ACR) and EULAR standardised operating procedures were followed during the project. With approval from the EULAR executive committee, and in parallel with two EULAR/ACR consensus guidance efforts in autoinflammatory diseases, an international, multidisciplinary TF was convened to develop PTC at the earliest stages in the recognition and management of HLH/MAS. The conveners (SWC and FdB) invited North American and European TF members with established expertise in the management of HLH/MAS to contribute. The TF consisted of 14 paediatric and adult rheumatologists, 4 haematologists/oncologists, 2 immunologists, 2 infectious disease specialists and 3 intensivists. In addition, the TF included a nurse experienced in caring for patients with HLH/MAS, two patient representatives and three methodologists.

At an initial face-to-face meeting in August 2019, the team defined the goals of the project, the target population and relevant questions using the Population, Intervention, Comparison, Outcome (PICO) format. The target audience was defined as healthcare professionals, policy makers, health insurance companies and patients and their caregivers. A systematic literature review (SLR) was performed by three team members (BS, MW, AG), with support from a librarian (DH), epidemiologist (DP) and senior methodologists (AR, EDe, DA) to identify relevant literature using PubMed, Embase and the Cochrane Library published before November 2020. Initial search terms for the SLR consisted of the full spectrum of names used to signify the syndrome of HLH/MAS. The resulting articles were filtered based on quality and relevance to PICO questions. SLR themes are discussed in brief throughout this manuscript, in the online supplemental methodology and detailed in a separate ‘SLR manuscript’.12

In response to the PICO questions and informed by the synthesis of SLR results and expert opinion, the TF drafted and refined overarching and specific PTC in the form of statements. Individual statements were suggested, edited and refined in two rounds of preconsensus meeting questionnaires using a secure web-based system (Jotform). These statements addressed early identification, diagnosis, monitoring and early management of
HLH/MAS as described in the SLR manuscript and tables 3 and 4. The response rate for each questionnaire was 100%. The TF members were asked to indicate their agreement with each statement or item with yes or no. A free text option was provided to capture every member’s comment or suggestion for modification. A request was also included for members to add items to be addressed, edited or altered. Responses to this questionnaire were reformulated as draft statements. Comments and suggestions provided in the questionnaires were used to modify the draft statements and to add additional items. The revised and amended statements were then circulated through a second round of questionnaires. After the two rounds, the draft statements were revised to incorporate all suggestions and reviewed by the TF members. These draft statements were then included for discussion at the consensus meetings.

The TF reviewed, discussed and voted on these statements in a consensus meeting held virtually over 3 days in March/April 2021. Prior to each of these consensus meetings, the results of the SLR and the draft statements were distributed to all TF members. During the meetings, statements that achieved at least 80% agreement were accepted; statements with <80% were discussed a final time in a nominal group, round robin format and were only accepted if the statement reached an 80% agreement at that point. Delphi technique was used to achieve consensus throughout the process.

Oxford levels of evidence and a grade of recommendation were assigned for each statement. Each TF member then assigned their level of agreement for each statement using an 11-point Likert scale from 0 to 10 (0: completely disagree, 10: completely agree).

RESULTS

Systematic literature review

Briefly, original research articles of any study design with diagnosis, treatment and monitoring of HLH/MAS that reported more than six cases were included. Of the 18,020 articles from PubMed, EMBASE and Cochrane, 258 were selected for full-text review and 167 articles were included for data extraction. Based on the expertise of TF members, SLR results and discussion at consensus conferences, the TF generated 6 overarching principles (table 3) and 24 diseasespecific PTC pertaining to HLH/MAS (table 4).

Overarching principles

Recognising the complexity and urgency of management decisions in systemic hyperinflammation and HLH/MAS, the TF generated six overarching principles (table 3) that provide guidance on the early recognition of characteristic clinical features, the systematic evaluation of contributors (including genetic causes, predisposing conditions and acute triggers), the implementation of early therapies and the monitoring of HLH/MAS progression.

Points to consider

The TF generated specific statements intended to offer practical consensus-based and evidence-based guidance for clinicians making decisions at the earliest stages of HLH/MAS consideration, recognition and management (table 4).

PTC 1.1–1.5: recognition, screening and early diagnosis

Given the variety of genetic causes, predisposing conditions and acute triggers from which HLH/MAS arises, recognising the presenting features and making a diagnosis are often challenging. Existing diagnostic criteria lack both sensitivity and specificity, especially in the context of confounding conditions like lymphoma or sepsis.

Based on existing criteria, current literature and expert experience, the TF agreed on clinical and laboratory abnormalities that together establish a recognisable pattern of potentially life-threatening HLH/MAS (PTC 1.1). Individual findings are non-specific and must be evaluated collectively and longitudinally. However, recognising the pattern of clinical and laboratory abnormalities that constitute HLH/MAS is critical for prompting an aetiological workup, considering treatments and initiating a monitoring strategy before serious complications or death occur.

Ferritin is a sensitive test for HLH/MAS, and there was broad consensus that ferritin levels should be checked in all patients with new, ongoing or heightened suspicion for HLH/MAS even if prior measurements have been normal (PTC 1.1–1.3). Essentiall all
Recommendation

Table 4 Consensus statements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>LoE/GoR</th>
<th>LoA (0–10)</th>
<th>Means±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognition, screening and early diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1.1 The following unexplained or unusually severe clinical and laboratory features, particularly if co-occurring, may represent a systemic hyperinflammatory syndrome and should prompt consideration of HLH/MAS in appropriate clinical contexts: | LoH: 1A
MAS: 3B | 9.5±1.1 | |
| ► Persistent fever | | | |
| ► Elevated and/or rising ferritin or other markers of inflammation/damage (CRP, LDH), | | | |
| ► Inappropriately low or declining haemoglobin, platelet counts or white blood cells (neutrophils and lymphocytes), | | | |
| ► Hepatic dysfunction (increased ALT, AST, bilirubin), | | | |
| ► Coagulopathy (low fibrinogen, increased PT/INR, increased d-dimers), | | | |
| ► Splenomegaly | | | |
| ► CNS dysfunction. | | | |
| 1.2 Patients with features of a systemic hyperinflammatory syndrome that could represent or progress to HLH/MAS should have a ferritin level checked. | 1A | 10.0±0.2 | |
| 1.3 Patients with a normal ferritin but ongoing clinical suspicion for HLH/MAS should have serial ferritin testing. | 5D | 9.4±1.0 | |
| 1.4 In addition to ferritin, clinicians should obtain the following routine laboratory evaluations: CBC with differential, liver panel, fibrinogen, d-dimer, LDH and CRP. | 1A | 9.5±0.7 | |
| 1.5 Following initial laboratory evaluations, assessment of specialised biomarkers of inflammation (eg, IL-2Rα (CD25), CD163, IL-18, CXCL9, neopterin, if available) may further aid in the diagnosis of HLH/MAS. These tests should be interpreted in consultation with a specialist with expertise in HLH/MAS. | 4C | 9.2±1.2 | |
| **Criteria** | | | |
| 2.0 Existing classification or diagnostic criteria perform well in specific settings, but no single set of criteria is sufficient to diagnose a syndrome of HLH/MAS across all contexts. | 5D | 9.4±1.2 | |
| **Evaluating contributors** | | | |
| 3.1 Certain underlying infections, rheumatic diseases, malignancies, metabolic diseases and genetic inborn errors of immunity are frequently associated with HLH/MAS and clinicians should consider evaluations for these in appropriate contexts. | 2B | 9.6±0.6 | |
| 3.2 Genetic testing in patients with probable HLH/MAS can dramatically affect diagnosis and management and should be considered early. | 3B | 9.0±1.8 | |
| 3.3 Decision-making about genetic testing in patients with probable HLH/MAS is complex, should integrate age, clinical features and laboratory/functional test results, and should involve specialists with expertise in HLH/MAS. | 4C | 9.4±0.9 | |
| 3.4 In patients for whom genetic testing is indicated, next-generation sequencing (eg, targeted gene panel, whole exome or whole genome sequencing) to screen for pathogenic variants, rather than single gene Sanger sequencing, is recommended. | 5D | 9.2±1.5 | |
| 3.5 Genetic counselling to assist with consenting and interpretation of results should be offered to patients being considered for genetic testing. | 5D | 9.1±1.4 | |
| **Prognostic factors and CNS involvement** | | | |
| 4.1 Underlying malignancy, CNS involvement, liver failure, multiple organ dysfunction and prolonged active disease are associated with a poor prognosis in patients with probable HLH/MAS; these should prompt urgency in establishing the diagnosis of HLH/MAS, identifying triggering conditions and initiating appropriate treatment. | 2B | 9.5±1.1 | |
| 4.2 All individuals with probable HLH/MAS should undergo a complete neurological examination. Patients with any of the following should be assessed for CNS involvement: age <1 year, known genetic HLH disorder; encephalopathy, seizures, altered mental status, irritability, meningesis, headache, vision changes or focal deficits. | 4C | 9.2±1.5 | |
| 4.3 Assessment for CNS involvement should include brain MRI and evaluation of cerebrospinal fluid glucose, protein and cell count with differential (with pathological review of cytology) when safe to do so. | 4C | 9.5±1.0 | |
| 4.4 In patients with probable HLH/MAS, assessment for CNS involvement should not delay initiation of systemic immunomodulatory therapy. | 4C | 9.7±0.7 | |
| **Treatment** | | | |
| 5.1 For patients with probable HLH/MAS and persistent, severe or worsening inflammation or organ dysfunction, initiation of immunomodulatory treatment should be considered while diagnostic testing is ongoing. | 5D | 9.7±0.7 | |
| 5.2 Choice of initial immunomodulatory treatment is complex and requires balancing an assessment of urgent risk due to rapid HLH/MAS progression with potential for obscuring diagnosis of malignancy or worsening active infection. | 2B | 9.6±0.9 | |
| 5.3 Initial empiric immunomodulatory therapy in patients with rapidly progressive HLH/MAS could include high-dose glucocorticoids, anakinra and/or IVIG based on local access. | GC: 2B
Anakinra: 2B
IVIG: 4C | 8.9±2.1 | |
| 5.4 In addition to supportive care and immunomodulatory HLH/MAS treatment, patients should receive appropriate antimicrobial and antiviral therapies and treatment of any underlying triggers or disorders. | 4C | 9.8±0.5 | |
| 5.5 In patients for whom prolonged immunomodulatory regimens are anticipated, consideration should be given to the use of antimicrobial and/or antiviral prophylaxis in consultation with an infectious disease expert. | 2B | 9.3±1.9 | |
| **Monitoring** | | | |
| 6.1 In patients with probable HLH/MAS, worsening or lack of improvement in laboratory parameters of systemic inflammation (particularly ferritin), DIC, hepatits or cytopenias may indicate disease progression and a need to re-assess diagnosis and/or treatment. | 2B | 9.6±0.8 | |
| 6.2 Patients with systemic hyperinflammation suspected of having or progressing to HLH/MAS require continuous clinical monitoring and frequent reassessment of organ dysfunction, which may necessitate ICU care. | 4C | 9.8±0.4 | |
| 6.3 Clinicians should monitor initial response to treatment by assessing clinical and laboratory markers of organ involvement at least daily and markers of systemic inflammation at least twice weekly.* | 2B | 9.3±1.0 | |
| **Multidisciplinary teams** | | | |
| 7.0 A multidisciplinary approach is preferred and can optimise the diagnostic workup and management of patients with systemic hyperinflammation and HLH/MAS. | 5D | 9.6±1.0 | |

*LoE: 1a: systematic review of RCTs; 1b: individual RCT; 2a: systematic review of cohort studies; 2b: individual cohort study (including low-quality RCT); 3a: systematic review of case-control studies; 3b: individual case-control study; 4: case-series (and poor-quality cohort and case-control studies); 5: expert opinion without explicit critical appraisal, or based on physiology, bench research or ‘first principles’; GoR: A: based on consistent level 1 studies; B: based on consistent level 2 or 3 studies or extrapolations from level 1 studies; C: based on level 4 studies or extrapolations from level 2 or 3 studies; D: based on level 5 studies or on troublingly inconsistent or inconclusive studies of any level; LoA using a 0–10 Likert scale.

*AAL, alanine aminotransferase; AST, aspartate aminotransferase; CBC, complete blood count; CNS, central nervous system; CRP, C reactive protein; CXL3B, C-X-C motif chemokine ligand 9; DIC, disseminated intravascular coagulation; GC, glucocorticoids; GoR, grade of recommendation; HLH, hemophagocytic lymphohistiocytosis; ICU, intensive care unit; IL-2Rα, interleukin-2 receptor alpha; INR, international normalised ratio; IVIG, intravenous immunoglobulin; LDH, lactate dehydrogenase; LoA, level of agreement; LoE, level of evidence; MAS, macrophage activation syndrome; PT, prothrombin time; RCT, randomised controlled trial.
patients with HLH/MAS with systemic disease have elevated ferritin levels,14,15 and hyperferritinemia is part of all existing HLH/MAS criteria (table 1). Levels >500ng/mL were 84% sensitive in paediatric patients with HLH,16 and served as the cut-off in clinical trials conducted by the Histiocyte Society, but this level is associated with poor specificity in other contexts and higher ferritin cut-off values have been used.12 The ferritin cut-off values used in paediatric HLH/MAS studies (500–2000ng/mL) tend to be lower than in adult studies (often >10000ng/mL) 2,6,7 where infectious and malignant contributors predominate.16 Other conditions such as iron overload, malignancy and hepatitis commonly induce high ferritin levels even in the absence of HLH/MAS.17

Abnormalities in other widely available clinical and laboratory indicators of inflammation, coagulopathy or organ damage/dysfunction also raise the level of suspicion for HLH/MAS (PTC 1.4, table 3). However, many HLH/MAS-associated biomarkers may also indicate parallel inflammatory processes (eg, elevated LDH in thrombotic microangiopathy).18 More specialised biomarkers measuring key HLH/MAS pathways (PTC 1.5, table 3, online supplemental table 1) are increasingly available from reference laboratories. These include measures of activation of T cells (soluble interleukin (IL)-2 receptor-α/CD25, T-cell HLA-DR isotype expression), macrophages (CD163, neopterin), inflammasomes (IL-18) and the interferon-gamma pathway (IFNγ, CXCL9). Their relative specificity (compared with other inflammatory parameters in table 5) is helpful in confirming an HLH/MAS diagnosis and in monitoring. The TF recommended assessment of specialised inflammatory biomarkers, interpreted with the aid of consultants, when available (PTC 1.5). Longitudinal assessment of both routine and specialised HLH/MAS biomarkers improves their diagnostic utility and is essential for monitoring for progression or resolution (as discussed below).19

PTC 2.0: existing criteria
Several criteria have been developed to identify patients with syndromes that may represent HLH or MAS (table 1, online supplemental table 2). The HLH-94 criteria (refined in HLH-04) were developed to classify infants and children for treatment trials targeting paediatric patients with genetic causes of HLH/MAS.2,5 The MAS-2016 criteria were developed to classify MAS in patients with known or strongly suspected sJIA.6 The HScore was developed in adults with primarily malignancy or infection-associated HLH,9 and the MS score to distinguish MAS from underlying sJIA.8 The HScore and HLH-2004 criteria have been validated in some additional contexts,20–23 The TF agreed that each set of criteria were useful within the context in which they were developed, but that no existing set of criteria was a sufficient diagnostic tool in all settings and populations (PTC 2). There is substantial overlap between criteria (table 1, online supplemental table 2).

PTC 3.1: evaluating contributors
The TF emphasised the critical importance of timely identification of underlying contributors (genetic causes, predisposing conditions and acute triggers as described in ‘Introduction’ section), often in a rapidly evolving and ill patient (PTC 3.1).
A thorough workup should begin immediately on suspicion for HLH/MAS and should be tailored to the most likely contributors, paying particular attention to the patient’s age, family history, infectious exposures/risk, recent treatments and underlying conditions. Although HLH/MAS is thought to result from the interaction of multiple host and environmental contributors, available data typically implicate a single aetiology (as reflected in table 6 and more thoroughly in SLR manuscript). Additionally, >2000 case reports and series demonstrate that HLH/MAS can occur in most settings that provoke an immune or inflammatory response.

Genetic causes of HLH/MAS represent a minority of all cases (particularly in adults), but they have made essential contributions to diagnostic and treatment advances. The IEI include nearly 500 genetically defined disorders, and for most of these HLH/MAS is a rare complication. The canonical high-penetration genetic causes of HLH are those that profoundly impair granule-mediated cytotoxicity as well as the X linked lymphoproliferative syndromes (table 7). The distinction between genetic causes and variants conferring susceptibility has grown less clear with time. Nevertheless, the identification of a genetic cause/contributor has profound implications (as discussed below).

Among predisposing conditions, malignancy (especially lymphoma) is a major contributor to HLH/MAS. Investigation for underlying malignancy should be considered in all patients with HLH/MAS, particularly in adults where it occurs in nearly half of cases. Although MAS is most recognised and best studied in sJIA and adult-onset Still disease (AOSD), SLE may be a more common cause of HLH/MAS in adults in part due to its higher prevalence.

Infection is the most common acute trigger of HLH/MAS. In children, infection is the most common aetiology, with a specific pathogen identified in over 50% of new HLH/MAS presentations. Broad testing for infection (eg, blood and other cultures, viral PCR, etc) should be pursued based on clinical scenario. Some infections warrant special attention for their role in HLH/MAS. Epstein-Barr virus (EBV) is a well-known trigger of HLH, particularly in individuals with genetic (table 7) or acquired immunodeficiency or certain malignancies. It is unclear why the incidence of EBV-HLH appears higher in Asia, but this is consistent with other EBV-triggered phenotypes. Region-specific and season-specific infections should also be considered as causes of HLH/MAS in endemic areas, including dengue virus in tropical/subtropical climates, histoplasmosis in the mid-western and southern USA, and less frequently malaria, tuberculosis, scrub typhus, typhoid fever, tickborne diseases, and leishmaniasis. Although inflammation in patients with COVID-19, multisystem inflammatory syndrome in children (MIS-C) or adults (MIS-A) rarely rises to meet HLH or MAS criteria, the pandemic normalised the need to identify and treat SARS-CoV2 infection-associated immunopathology. Testing for genetic contributors should be considered regardless of the type of infection, particularly in young children.

The increasing use of immune effector cell cancer therapies, including chimeric antigen receptor T-cell cytokine release syndrome. Testing for CNS involvement is particularly important in genetic HLH. Early recognition of familial haemophagocytic lymphohistiocytosis may accelerate allogeneic haematopoietic stem cell transplantation (HSCT) and can support HSCT in affected

A thorough workup should begin immediately on suspicion for HLH/MAS and should be tailored to the most likely contributors, paying particular attention to the patient’s age, family history, infectious exposures/risk, recent treatments and underlying conditions. Although HLH/MAS is thought to result from the interaction of multiple host and environmental contributors, available data typically implicate a single aetiology (as reflected in table 6 and more thoroughly in SLR manuscript). Additionally, >2000 case reports and series demonstrate that HLH/MAS can occur in most settings that provoke an immune or inflammatory response.

Genetic causes of HLH/MAS represent a minority of all cases (particularly in adults), but they have made essential contributions to diagnostic and treatment advances. The IEI include nearly 500 genetically defined disorders, and for most of these HLH/MAS is a rare complication. The canonical high-penetration genetic causes of HLH are those that profoundly impair granule-mediated cytotoxicity as well as the X linked lymphoproliferative syndromes (table 7). The distinction between genetic causes and variants conferring susceptibility has grown less clear with time. Nevertheless, the identification of a genetic cause/contributor has profound implications (as discussed below).

Among predisposing conditions, malignancy (especially lymphoma) is a major contributor to HLH/MAS. Investigation for underlying malignancy should be considered in all patients with HLH/MAS, particularly in adults where it occurs in nearly half of cases. Although MAS is most recognised and best studied in sJIA and adult-onset Still disease (AOSD), SLE may be a more common cause of HLH/MAS in adults in part due to its higher prevalence.

Infection is the most common acute trigger of HLH/MAS. In children, infection is the most common aetiology, with a specific pathogen identified in over 50% of new HLH/MAS presentations. Broad testing for infection (eg, blood and other cultures, viral PCR, etc) should be pursued based on clinical scenario. Some infections warrant special attention for their role in HLH/MAS. Epstein-Barr virus (EBV) is a well-known trigger of HLH, particularly in individuals with genetic (table 7) or acquired immunodeficiency or certain malignancies. It is unclear why the incidence of EBV-HLH appears higher in Asia, but this is consistent with other EBV-triggered phenotypes. Region-specific and season-specific infections should also be considered as causes of HLH/MAS in endemic areas, including dengue virus in tropical/subtropical climates, histoplasmosis in the mid-western and southern USA, and less frequently malaria, tuberculosis, scrub typhus, typhoid fever, tickborne diseases, and leishmaniasis. Although inflammation in patients with COVID-19, multisystem inflammatory syndrome in children (MIS-C) or adults (MIS-A) rarely rises to meet HLH or MAS criteria, the pandemic normalised the need to identify and treat SARS-CoV2 infection-associated immunopathology. Testing for genetic contributors should be considered regardless of the type of infection, particularly in young children.

The increasing use of immune effector cell cancer therapies, including chimeric antigen receptor T-cell cytokine release syndrome. Testing for CNS involvement is particularly important in genetic HLH. Early recognition of familial haemophagocytic lymphohistiocytosis may accelerate allogeneic haematopoietic stem cell transplantation (HSCT) and can support HSCT in affected

Table 6: Proportion of attributable HLH/MAS cases by primary contributor *

<table>
<thead>
<tr>
<th>Genetic causes</th>
<th>Paediatric</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic HLH disorders</td>
<td>12% (3–66)</td>
<td>Rare</td>
</tr>
<tr>
<td>Other inborn error of immunity</td>
<td>6% (2–18)</td>
<td>Rare</td>
</tr>
<tr>
<td>Predisposing conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatological</td>
<td>10% (2–26)</td>
<td>8% (2–26)</td>
</tr>
<tr>
<td>Malignancies</td>
<td>5% (2–19)</td>
<td>46% (26–73)</td>
</tr>
<tr>
<td>Critical illness</td>
<td>42% (17–49)</td>
<td>18% (4–40)</td>
</tr>
</tbody>
</table>

*Summary of individual cohort studies identified in the SLR that attempted to capture all cases of HLH/MAS over a study period and aimed to identify an underlying predisposing condition or acute trigger. Results were divided by age <18 or ≥18 years. Only series with ≥30 patients, and that attributed a single contributing aetiology per patient were included. Attributable cases are described as the median percentage and range for all cohort studies included. As such, columns sum to >100%. See SLR manuscript for details. Rare: <1.5%.

The SLR did not identify studies that quantified the proportion of HLH/MAS attributable to iatrogenic triggers (eg, chimeric antigen receptor T-cell cytokine release syndrome). HLH, haemophagocytic lymphohistiocytosis; MAS, macrophage activation syndrome; SLR, systematic literature review.
presymptomatic siblings. Some HLH/MAS therapeutic trials include or exclude specific genetic causes (ClinicalTrials.gov identifiers NCT04641442, NCT03113760).

When to perform genetic testing, on whom, what test(s) to send and how to interpret detected variants are complex and evolving decisions (PTC 3.3). Features suggestive of a genetic cause include young age at presentation, positive family history, consanguinity and prominent CNS disease. HLH/MAS due to cytotoxicity defects tends to present in infancy and early childhood, whereas HLH/MAS in other IEI (particularly those with EBV immunodeficiency, table 7) present in a broader age range including older children. Although genetic HLH has presented in adulthood, actionable results of genetic testing in adult HLH/MAS are rare. Other relevant clinical features/contexts like albinism, inflammatory bowel disease, isolated CNS involvement and EBV-immunodeficiency suggest specific genetic causes (PTC 3.3, table 7).

Given the high prevalence of genetic causes in children and the large clinical impact of a positive finding, the TF supported early genetic testing in children and high-risk adults, preferably using multigene panels or whole exome/genome sequencing (PTC 3.4). Single-gene sequencing remains appropriate with family history of a known genetic HLH disorder, characteristic clinical features (eg, albinism), positive protein or functional testing (eg, perforin flow cytometry) or in resource-limited settings. Genetic counselling is warranted for all patients undergoing genetic testing (PTC 3.5).

Table 7 Genes associated with HLH/MAS susceptibility*

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein</th>
<th>Disease acronym</th>
<th>Frequency of HLH/MAS†</th>
<th>Clinical association‡</th>
<th>Specialised testing§</th>
<th>OMIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRF1</td>
<td>Perforin</td>
<td>FHL2</td>
<td>High</td>
<td>Early onset, isolated CNS</td>
<td>FL, NK</td>
<td>603553</td>
</tr>
<tr>
<td>UNC13D</td>
<td>Munc13-4</td>
<td>FHL3</td>
<td>High</td>
<td>Isolated CNS involvement</td>
<td>NK, Degran</td>
<td>608898</td>
</tr>
<tr>
<td>STX11</td>
<td>Syntaxin1</td>
<td>FHL4</td>
<td>High</td>
<td>Variable age at onset, possible risk MDS/leukaemia</td>
<td>NK, Degran</td>
<td>603552</td>
</tr>
<tr>
<td>STXB2P</td>
<td>Munc 18 to 2</td>
<td>FHL5</td>
<td>High</td>
<td>IBD, SNHL, hypogammaglobulinaemia</td>
<td>NK, Degran</td>
<td>613101</td>
</tr>
<tr>
<td>RAB27A</td>
<td>Rab27a</td>
<td>GS2</td>
<td>High</td>
<td>Albinism, infection</td>
<td>NK, Degran</td>
<td>607624</td>
</tr>
<tr>
<td>LYST</td>
<td>LYST</td>
<td>CHS</td>
<td>Moderate</td>
<td>Albinism, infection</td>
<td>NK, Degran</td>
<td>214500</td>
</tr>
<tr>
<td>AP3B1</td>
<td>AP3</td>
<td>HPS2</td>
<td>Moderate/Low</td>
<td>Albinism, infection, bleeding</td>
<td>NK, Degran</td>
<td>608233</td>
</tr>
<tr>
<td>RHOG</td>
<td>RhoG</td>
<td>–</td>
<td>Unknown</td>
<td>NK, Degran</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN201A</td>
<td>SAP</td>
<td>XLP1</td>
<td>High</td>
<td>Lymphoma</td>
<td>FL</td>
<td>308240</td>
</tr>
<tr>
<td>ITK</td>
<td>ITK</td>
<td>LPSF1</td>
<td>Moderate</td>
<td>Lymphoma</td>
<td></td>
<td>613011</td>
</tr>
<tr>
<td>CD27</td>
<td>CD27</td>
<td>LPSF2</td>
<td>Moderate</td>
<td>Lymphoma</td>
<td></td>
<td>615122</td>
</tr>
<tr>
<td>CD70</td>
<td>CD70</td>
<td>LPSF3</td>
<td>Moderate</td>
<td>Lymphoma</td>
<td></td>
<td>618261</td>
</tr>
<tr>
<td>MAGT1</td>
<td>MAGT1</td>
<td>XMEN</td>
<td>Moderate</td>
<td>Lymphoma</td>
<td></td>
<td>300853</td>
</tr>
<tr>
<td>CTPS1</td>
<td>CTPS1</td>
<td>–</td>
<td>Moderate</td>
<td>Lymphoma</td>
<td></td>
<td>615897</td>
</tr>
<tr>
<td>RASGRF1</td>
<td>RASGRF1</td>
<td>–</td>
<td>Moderate</td>
<td>Lymphoma</td>
<td></td>
<td>618534</td>
</tr>
<tr>
<td>XIAP/BIRC4</td>
<td>XIAP</td>
<td>XLP2</td>
<td>Moderate</td>
<td>IBD</td>
<td>FL, IL-18</td>
<td>300635</td>
</tr>
<tr>
<td>NLRC4</td>
<td>NLRC4</td>
<td>AIFEC, MAS</td>
<td>Moderate</td>
<td>Early onset, IBD</td>
<td>IL-18</td>
<td>616050</td>
</tr>
<tr>
<td>CDC42</td>
<td>CDC42</td>
<td>NOCARH</td>
<td>High</td>
<td>Early onset, rash</td>
<td>IL-18</td>
<td>–</td>
</tr>
<tr>
<td>XCIAP1</td>
<td>HEM1</td>
<td>–</td>
<td>Unknown</td>
<td>Infection, autoimmunity</td>
<td></td>
<td>618982</td>
</tr>
<tr>
<td>RCH1</td>
<td>ROQUIN</td>
<td>–</td>
<td>Unknown</td>
<td></td>
<td></td>
<td>618998</td>
</tr>
<tr>
<td>HAVCR2</td>
<td>TIM3</td>
<td>–</td>
<td>Moderate</td>
<td>SPTCL</td>
<td></td>
<td>606562</td>
</tr>
<tr>
<td>SLCTA7</td>
<td>SLCTA7</td>
<td>LPI</td>
<td>Moderate</td>
<td>Enteral protein intolerance</td>
<td></td>
<td>222700</td>
</tr>
</tbody>
</table>

*List is not comprehensive, consult with appropriate specialists for appropriate breadth of testing.
†In appropriate inheritance pattern, Genes with moderate/low HLH frequency have other phenotypes.
‡Beyond those common in HLH/MAS, see table 1.
§Only C-terminal CDC42 mutations have been associated with HLH/MAS.
¶Boundaries – central CDC42 mutations have been associated with HLH/MAS.
AIFEC, autoinflammation with infantile enterocolitis; CHS, Chediak-Higashi syndrome; CNS, central nervous system; FHL, familial haemophagocytic lymphohistiocytosis; GS2, Griscelli syndrome type 2; HP2, Hermansky-Pudlak syndrome type 2; IBD, inflammatory bowel disease; LPSF, lymphoproliferative syndrome; LPI, lysinuric protein intolerance; NOCARH, neonatal-onset pancytopenia, autoinflammation, rash and episodes of HLH; SNHL, sensory neural hearing loss; SPTCL, subcutaneous panniculitis-like T-cell lymphoma; XLP, X linked lymphoproliferative syndrome; XMEN, X linked immunodeficiency with magnesium defect, Epstein-Barr virus infection and neoplasia.
Recommendation

common and can progress to life-threatening liver failure. It should be suspected in all patients being evaluated for HLH/MAS (PTC 4.2). CNS manifestations of HLH/MAS can be broad (tables 1 and 5), and cerebrospinal fluid (CSF) and imaging findings usually demonstrate evidence of inflammation in affected patients. Incidence of CNS involvement varies by age and aetiology, and children with HLH/MAS are at higher risk than adults, especially children with genetic causes. Some degree of CNS involvement is present in a sizeable percentage of children with EBV-HLH, sJIA-MAS and adults with secondary HLH/MAS. CNS involvement should be considered in all patients, and all should undergo a complete neurological examination. Patients presenting under 1 year of age, those otherwise suspected of having familial disease and any patient with symptoms or signs concerning for CNS dysfunction (including an unreliable exam) should undergo assessment for CNS involvement (PTC 4.2). Assessment for CNS involvement may include CSF evaluation (glucose, protein, cell counts and often cytological review) and contrast-enhanced brain MRI as well as other testing (electroencephalogram, MR angiography, spinal imaging) as clinically indicated (PTC 4.3). Full evaluation often must await stabilisation of cardiorespiratory function, coagulopathy or intracranial pressure. Providers should not delay empiric or context-specific treatments in order to complete the CNS workup (PTC 4.4).

PTC 5.1–5.5: treatment considerations

Treatments of patients with suspected HLH/MAS requires a dynamic risk-benefit assessment. Consideration of HLH/MAS-directed immunomodulation should occur simultaneously with diagnostic evaluations (PTC 5.1–3), treatment of contributing factors (PTC 5.4) and prevention of complications (PTC 5.4–5.5). Figure 1 is intended to depict how these PTCs on early diagnosis, monitoring and management may function in practice, in relation to each other and relative to the goal of context-specific treatment. Age-appropriate supportive care should follow accepted guidelines, such as the Surviving Sepsis Campaign, and its provision, as well as the frequency of monitoring (as discussed below) may require intensive care. ICU admission was required in over a third of children with HLH/MAS (PTC 5.4–5.5).

Figure 1 Summary of the approach to early or suspected HLH/MAS. When HLH/MAS is suspected, providers should (in parallel and as clinically appropriate) assess for the key features of HLH/MAS; investigate suspected contributors and treat with supportive care, with empiric and prophylactic antimicrobials, with other prophylaxis regimens, and possibly with empiric immunomodulation. Ongoing monitoring and reassessment should prompt re-evaluation of treatments being given. Patients should transition to context-specific treatment immediately on identification of a confirmed aetiology. *Addressed in separate guidance documents, see www.histiocytesociety.org/HLH-consensus. α-IFN, interferon-alpha; CBC+diff, complete blood count with leucocyte differential; CMV, cytomegalovirus; CRP, C reactive protein; CSF, cerebrospinal fluid; DIC, disseminated intravascular coagulopathy; DVT, deep vein thrombosis; EBV, Epstein-Barr virus; ESR, erythrocytase sedimentation rate; GC, glucocorticoids; GGT, γ-glutamyl transferase; HLH94, HLH-94 treatment protocol 1 or current standard of care; IVlg, intravenous immunoglobulin; LDH, lactate dehydrogenase; LFTs, liver function tests; PT/PTT, prothrombin time/partial thromboplastin time; TG, triglycerides.
Table 8 Empiric HLH/MAS immunomodulatory treatment dosing

<table>
<thead>
<tr>
<th>Glucocorticoids (GC)*</th>
<th>Paediatric</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Prednisone/Prednisolone per os or methylprednisolone intravenous</td>
<td>1–2 mg/kg/day</td>
<td></td>
</tr>
<tr>
<td>b. Dexamethasone intravenous</td>
<td>0–10 mg/m²/day</td>
<td></td>
</tr>
<tr>
<td>c. High-dose methylprednisolone intravenous</td>
<td>10–30 mg/kg/day (maximum 1 g/day) for 1–3 days, followed by a. or b.</td>
<td></td>
</tr>
<tr>
<td>Intravenous immunoglobulin</td>
<td>1 g/kg/day×2 days</td>
<td>0.4–1 g/kg/day×2–5 days</td>
</tr>
<tr>
<td>Anakinra†</td>
<td>Intravenous (preferred) or subcutaneous 5–10 mg/kg/day</td>
<td></td>
</tr>
</tbody>
</table>

Dosages derived from SLR unless otherwise noted.

*This table reflects the summary of reported immunomodulatory pharmacotherapy in the literature and is not intended as a substitute for clinical judgement.

†Dosing schedules and substitution with other GC and/or other (intravenous or oral) preparations can be based on preference, availability and patient need.

‡Daily dose often divided every 6–12 hours.

HLH, haemophagocytic lymphohistiocytosis; MAS, macrophage activation syndrome; SLR, systematic literature review.

HLH/MAS and nearly half of adults with MAS.61 In children and adults requiring ICU admission for HLH/MAS, nearly 70% required mechanical ventilation or vasopressors/inotropes and nearly half required renal replacement therapy.32 30 Use of intensive care appears higher in HLH/MAS occurring in context with worse outcomes, like malignancy.34 71 89

Choosing and adjusting empiric immunomodulation for suspected HLH/MAS can be challenging. Decision-making must integrate HLH/MAS severity and rate of progression, specific organ involvement, likely contributors, comorbid conditions and concurrent medications (figure 1). Ideally, targeted immunomodulation would be initiated as early as possible (PTC 5.1) and neither induce immunosuppression nor compromise the aetiological workup. In practice, determining the target and balancing these risks are essential, patient-specific challenges. Although no studies have evaluated empiric treatment of HLH/MAS prior to/regardless of aetiology, immunomodulatory treatment has dramatically improved survival in most aetiologies of HLH/MAS.12 49 90 91 In patients with high-risk features or progressive HLH/MAS, the TF strongly recommends considering empiric immunomodulation during the initial evaluation and management period (PTC 5.1–3). Once there is sufficient understanding of a patient’s underlying contributors, management should shift to context-specific treatments and recent context-specific guidance documents may be helpful in this transition.67 74 92–98

The TF currently endorses use of glucocorticoids (GCs), the recombinant IL-1 receptor antagonist (IL-1RA) anakinra and/or intravenous immunoglobulin (IVIg) for empiric immunomodulation in suspected HLH/MAS (PTC 5.3, figure 1, table 8). Multiple treatments may be initiated concurrently depending on clinical context and availability. Published treatment data demonstrate the strongest support for GCs across all forms of HLH/MAS.52 The choice of GC formulation (most commonly prednisone, prednisolone, dexamethasone (DEX) or methylprednisolone (MP)) and route of administration (oral vs intravenous) should be tailored to the patient and care setting (table 8). ‘Pulse’ doses of intravenous MP (10–30 mg/kg/day up to 1 g, given daily) are effective in severe rheumatic and neuro-inflammatory diseases,3–9 and have been used successfully in HLH/MAS.41 DEX is used in HLH treatment protocols due to better CNS penetration at an initial dose of 10 mg/m²/day (−2–4 mg/kg/day of MP). Given DEX’s long half-life, shorter-acting GCs may be preferable in rapidly evolving diagnostic scenarios.

Importantly, GC administration may obscure pathological diagnosis and/or staging of leukaemia or lymphoma.98 Therefore, definitive testing for malignancy (typically biopsy/aspirate of bone marrow, lymph node and/or other indicated tissues) should be attempted prior to GC administration when possible. GC-related immunosuppression depends on dose, duration of exposure and relevant pathogens. Although GC treatment (alongside appropriate antimicrobial treatment) prevents immunopathology in many localised infections,99 100 large studies have not supported its utility for immunomodulation in sepsis. Thus, the role of GC in infection-associated HLH/MAS remains patient-dependent and pathogen-dependent. Providers should monitor for other dose-dependent GC side effects like hyperglycaemia, hypertension, myopathy and psychosis.

Empiric use of anakinra and/or IVIg in early, evolving or undifferentiated HLH/MAS may provide immunomodulation without significant immunosuppression and without impairing malignancy workup. The TF supported their inclusion despite sparse data due to good pharmacological and safety profiles, strong efficacy in other systemic inflammatory diseases and significant clinical experience. Anakinra is a safe and effective treatment for many autoinflammatory and rheumatic disorders. Its rapid onset and short half-life may be desirable in rapidly evolving patients. Even used at high doses in adults with bacterial sepsis (up to 48 mg/kg/day), it showed no signal for immunosuppression and appeared to limit mortality in patients with sepsis with hepatobiliary dysfunction and coagulopathy.100 101 A retrospective study in secondary HLH supported the safety and possible efficacy of early anakinra use in controlling inflammation.102 IVIg has demonstrated efficacy in Kawasaki disease, and it neither obstructs cancer workup nor suppresses immune function. Notably, serological testing should be sent from samples taken prior to IVIg when feasible. Reports of its efficacy in HLH/MAS are restricted to case series. High-dose IVIg is also a substantial colloid load that can compromise cardiac function and worsen oedema. It rarely causes haemolysis or aseptic meningitis.

Clinical context is essential when considering escalation or context-specific treatment(s), and clinicians are encouraged to consult with local, regional or national experts on a case-specific basis. B-cell depletion may be useful in some patients with EBV-HLH.103 104 Early initiation of treatment regimens centred around the chemotherapeutic etoposide (guidelines in Ehl et al92) have been life-saving for patients with primary HLH and severe EBV-HLH.49 77 Evidence for high-dose etoposide is less favourable for HLH/MAS in the context of sJIA/AOSD, although lower doses may be useful.105 It is not indicated for most non-EBV infections.14 106–108 The utility of etoposide in malignancy-associated HLH is currently unclear.93 109

For patients with increasing inflammation and/or worsening organ damage despite early immunomodulation, treatment escalation with higher doses of GC and/or alternative agents (table 9) should be considered in consultation with HLH/MAS experts. Increasing evidence supports the involvement of the IFNβ pathway in HLH/MAS. The IFNβ neutralising antibody, emapalumab, was recently approved in the USA for the treatment of refractory, recurrent, or progressive HLH.110 Ruxolitinib (and other JAK inhibitors) broadly targets cytokine signalling, including IFNβ, and has shown promising early results in HLH/MAS.111–113

Alongside HLH/MAS-directed immunomodulation, treatment of contributing factors is critical for optimising outcomes (PTC...
5.4). This will often include empiric antimicrobial and sometimes antiviral agents, accounting for exposures/geography, comorbidities (eg, renal failure) and chronic immunosuppression. Like other aspects of HLH/MAS treatment, infectious prophylaxis should be considered early and revisited as the patient and workup evolve (PTC 5.5). Secondary infections can complicate both the inpatient and outpatient course of HLH/MAS. Antifungal and *Pneumocystis jirovecii* pneumonia prophylaxis are recommended, and are part of the HLH-94 protocol.7

Antifungal and antiviral prophylaxis were administered in more recent trials with newer agents like emapalumab.110 In addition to assistance with empiric treatment, consultation with immunocompromised infectious disease specialists may aid prophylaxis planning (PTC 5.5).

Table 9 Other immunomodulatory therapies used in HLH/MAS*

<table>
<thead>
<tr>
<th>Route</th>
<th>Paediatrics</th>
<th>Adults</th>
<th>Adverse events†</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etoposide (chemotherapy)</td>
<td>Per os Intravenous</td>
<td>50–150 mg/m²/dose 1–2 doses/week³⁶</td>
<td>50–150 mg/m²/dose 1–2 doses/week³⁶</td>
<td>BM suppression, hepatotoxicity, hypotension (infusion-related), mucositis/aloepecia, nausea/vomiting, secondary malignancy</td>
</tr>
<tr>
<td>Ciclosporin (calcineurin inhibition)</td>
<td>Per os Intravenous</td>
<td>3–5 mg/kg/day Two times per day³⁴</td>
<td>2–7 mg/kg/day Twice daily³⁴</td>
<td>Nephrotoxicity/HTN, hepatotoxicity, hirsutism, gingival hyperplasia, neurotoxicity</td>
</tr>
<tr>
<td>Ruxolitinib (JAK inhibition)</td>
<td>Per os Intravenous</td>
<td>2.5–20 mg/dose³⁶ 102 113 114 or 25 mg/m²/dose Two times per day</td>
<td>Immunosuppression (herpes viruses)</td>
<td>Infectious screening and PPx</td>
</tr>
<tr>
<td>Emapalumab (IFNγ neutralisation)</td>
<td>Intravenous Refractory HLH110; 1–10 mg/kg/dose sJIA-MAS†† 6, then 3 mg/kg/dose every 3 days</td>
<td>Immunosuppression (mycobacteria, herpes viruses, and histoplasma capsulatum), HTN, infusion reactions</td>
<td>Infectious screening and PPx</td>
<td></td>
</tr>
<tr>
<td>Rituximab (B-cell depletion)</td>
<td>Intravenous</td>
<td>375 mg/m²/dose (maximum 1 g) Two times per day, separated by 2 weeks³³ 104</td>
<td>Infusion reactions, HTN, hepatotoxicity, immunosuppression (hepatitis B), cytopneas, J-lg G, mucocutaneous reaction, progressive multifocal leukoencephalopathy (rarely)</td>
<td>Specifically for EBV-HLH</td>
</tr>
</tbody>
</table>

*Consultation with providers experienced in managing HLH/MAS is strongly advised prior to administration.
†List of common and important (bold) adverse events with short-term (up to 3 months) use based on (https://www.accessdata.fda.gov/scripts/cder/idaf/index.cfm) and (https://www.uptodate.com/contents/table-of-contents/drug-information/general-drug-information).
‡Primarily used in MAS. Can be substituted with tacrolimus (initial dose 0.1 mg/kg/day per os divided every 12 hours, targeting trough 8–20 ng/mL).
¶Dosing in ongoing sJIA-MAS trial NCT05001737.
§Weight-based dosing per indicated references. Body surface area dosing used in ongoing HLHRUXO trial NCT04551131.
*Based on dosing in ongoing sJIA-MAS trial NCT05001737. BM, bone marrow; HLH, haemophagocytic lymphohistiocytosis; HTN, hypertension; IFN, interferon gamma; MAS, macrophage activation syndrome; PPx, prophylaxis; sJIA, systemic juvenile idiopathic arthritis.

PTC 6.1–6.3: monitoring

Monitoring for disease progression, new organ involvement and damage and response to treatment begins on suspicion for HLH/MAS. Monitoring plans should be tailored to severity, organ involvement and likely contributors of HLH/MAS. Many of the biomarkers useful for diagnosing HLH/MAS also have prognostic relevance (table 5, online supplemental table 1, PTC 6.1). For example, both higher initial ferritin levels and failure of ferritin to improve during therapy associate with worse outcomes.71 114–115

No comparative studies evaluate the ideal laboratory monitoring protocol. Given the propensity for rapid clinical changes, initial monitoring may include daily assessment of inflammatory biomarkers (eg, CRP, ferritin), indicators of organ damage (eg, CBC, fibrinogen, ALT) and any drug-specific monitoring. More frequent monitoring may be needed for evolving or critically ill patients and may require ICU care.8⁰ (PTC 6.2, table 5). Lack of response to initial therapy should prompt a careful re-examination of both underlying diagnoses and therapeutic approach. When available, more specific HLH/MAS biomarkers like sIL-2Ra, IL-18 and CXCL9 should be monitored less frequently than conventional disease activity measures like ferritin and CRP (PTC 6.5, table 4). CXCL9 may be particularly useful for monitoring response to IFNγ-blocking therapies.116 Specialised tests may also be helpful in distinguishing HLH/MAS relapse from acquired infection or drug reaction. Treatment response and dose-escalation criteria used in HLH/MAS trials also reflect the overlap between diagnostic and monitoring tests.12

PTC 7.0: multidisciplinary teams

Mounting evidence suggests that a multidisciplinary team experienced in managing HLH/MAS may improve recognition, reduce immunosuppression and improve outcomes (PTC 7.0).
DISCUSSION

HLH/MAS is a life-threatening immunopathological state requiring a systematic evaluation of aetiological factors and prompt intervention. It occurs in many contexts, can present to various providers and its contributors are often unclear. Thus, the TF has targeted these PTCs at a broad audience to aid in recognizing the clinical and laboratory features of HLH/MAS, investigating underlying contributors, initiating appropriate (empiric, targeted, and prophylactic) treatments and monitoring for response, progression and complications.

While generating the PTCs for the earliest stages of HLH/MAS, the multisubspecialty TF was also charged with identifying areas of substantial unmet need (box 1). Among these, TF members identified a need to standardise and harmonise the terminology used to describe and categorise patients with HLH/MAS. This nomenclature should be based on both clinical manifestations and underlying contributor(s), account for diagnostic uncertainty, apply across a range of sites and specialties and associate with validated criteria. Given the breadth of providers this change would affect, it may require a distinct, objective and international collaboration.

There is also an urgent need to expand access to, and clarify the role of routine and specialised testing for patients with suspected HLH/MAS. The TF has highlighted the importance of trending ferritin levels in recognising, diagnosing and monitoring HLH/MAS, but results are not quickly available in many locations. Specialised biomarkers (eg, sIL-2Rα, IL-18, CXCL9) may be more specific for HLH/MAS, but results often do not return quickly enough to be useful in early decision-making. These tests are often unavailable outside of academic centres. Studies are needed that systematically evaluate the impact of real-time biomarker assessments on treatment decisions and patient outcomes, and that determine optimal diagnostic cut-offs.

The TF also highlighted a need to better study how rapid genetic diagnostics affects treatment stratification and outcomes for (particularly paediatric) patients presenting with HLH/MAS. Mounting data demonstrate that rapid whole-genome sequencing in high-risk populations (eg, hospitalised infants) may shorten time to diagnosis, both improving care and decreasing overall medical costs. Despite dramatic improvements in sequencing cost and speed, identification of actionable genetic contributors to HLH/MAS is often delayed by availability and/or restrictive payer policies. The results of these studies may encourage hospital systems and payers to support improved access and rapid results. Given the large (and rising) number of identifiable genetic variants with important management consequences, the TF encouraged broad genetic testing particularly in paediatric patients with HLH/MAS.

Therapeutically, the TF identified the need for expanded clinical research to better understand the effectiveness of existing therapies, and the need for long-term investments in basic/translational research to identify novel, targetable pathways. These studies are needed both in specific contexts as well as in HLH/MAS broadly. Specifically, studies are needed that address the efficacy of early immunomodulation (analogous to time-to-antibiotics in sepsis) and protocolised assessment of CNS involvement. Trials of treatment efficacy are needed that use active comparators and more proximate outcomes than survival (eg, steroid exposure, length of stay, durable functional impairment and quality of life). To this end, ongoing clinical trials to test the safety and effectiveness of agents such as ruxolitinib (NCT04551131), alentuzumab (NCT02472054), takedinig alfa (NCT03113760), emapalumab (NCT05001737) and MAS825 (NCT04641442) in a variety of HLH/MAS settings are of vital interest.

To meet these testing and therapeutic challenges, there is also a need to improve multicentre, prospective HLH/MAS registries and biobanks. HLH/MAS overall is not particularly rare, and our SLR identified and screened over 12 000 published articles, but very few of these were prospective or controlled. Studies in resource-limited countries/environments were particularly lacking. As our community builds research infrastructure and advocates for expanded access, improved turn-around times and targeted therapeutics, it must prioritise inclusion of resource-limited settings and implementation in underserved areas.

The HLH/MAS paradigm has evolved rapidly in response to genetic, biomarker, clinical and therapeutic insights. These insights reflect the diversity and intersection of contributors and suggest convergence on a shared HLH/MAS physiology and phenotype. These insights have also led to more diagnostic and therapeutic options while highlighting the wide spectrum of primary care and subspecialty providers who care for patients with early features of HLH/MAS. With these advances, the challenge of identifying and managing at-risk patients and patients with early HLH/MAS has grown. These PTC aim to translate these insights into practical guidance that will hasten recognition, streamline diagnosis and improve early management as the essential tasks needed to limit immunopathology, mitigate organ dysfunction and achieve the best outcomes for patients with HLH/MAS.
Acknowledgements The task force is grateful to the librarian Darren Hamilton (London Health Sciences Center, London, Ontario, Canada) for his contribution to the systematic literature search, Brian Feldman and Joan Moore for their support in conducting the Delphi process and EULAR and the ACR for financial and logistical support. This project is part of a series of “points to consider” consensus efforts (overseen by DE and RG) to standardise the diagnosis and care of patients within major groups of known autoinflammatory diseases including 1) the IL-1 mediated diseases CAPS, TRAPS, MKD and DIRA; 2) the autoinflammatory interferonopathies chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), STING-associated vasculopathy with onset in infancy (SAV) and Aicardi-Goutières syndrome and 3) the early diagnosis and management of inflammatory conditions with the potential progression to HLH/MAS. This research was supported in part by the intramural research programme of the National Institute for Allergy and Infectious Diseases. We are grateful for the invaluable financial and organisational support from the Autoinflammatory Alliance and the Systemic JIA Foundation, who substantially contributed to an international meeting and workshop organisation in August 2019 that developed the outline of the points to consider project. The funds for that meeting came largely from patient fundraisers, online fundraising and the work of countless volunteers who made this project possible.

Contributors Contributions to the conception or design of the work: BS, AR, DA, RS, DE, RG-M, FdB, RAM, SWC. Acquisition, analysis or interpretation of data for the work: all authors. Drafting the work or revising it critically for important intellectual content: all authors. Final approval of the version to be published: all authors. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: all authors.

Funding This work was funded by European Alliance of Associations for Rheumatology/American College of Rheumatology (C1120). KK was supported by K12HD047349. SWC was supported by R01HD098428.

Competing interests CA participated in a DSMB for Sobi and OPNA. HB received consulting fees from FirstThought, Guidepoint and Kiya Therapeutics. EMBr received research support from AB?Bio and consulting fees from Sobi and Genzyme. SWC received research support from Novartis and AB2Bio, has performed consulting for Simcha and Apollo therapeutics and received travel support from Sobi. RQG has received research support from Sobi, consulting fees from Sironax, speakers’ bureau payments from Sobi and Lilly, participated on the DSMB for Sobi, Pfizer and AbbVie. RG-M has received research support from IFM, Lilly, Sobi and Regeneron, and participates on a DSMB for AstraZeneca. AG has received research support from Sobi, Novartis and Novo Nordisk, royalties from Elsevier, Date, consulting fees from Ethox, payments from Novartis for educational materials. LAH has received research support from BMS and Sobi, consulting fees from Sobi, Pfizer and Adaptive Biotechnologies. MH has received research support from Incyte. AH has received honoraria from Sobi and Novartis. RAM has received honoraria for PracticePoint Communications, and participates on the DSMB for Horizon. KEN has received research support from Incyte and owns stock in Incyte. AR has received honoraria from AbbVie, Alexion, Novartis, Pfizer, Reckitt, Bensiner and Sobi. GS has received consulting fees from Sobi and Novartis. SV has received research support from Sobi, consulting fees from Sobi and Novartis.

Patient consent for publication Not applicable.

Ethics approval This study was reviewed and approved by all task force members and the EULAR and ACR Executive Committees prior to submission.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMI. BMI disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMI does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

ORCID iDs
David Paskin http://orcid.org/0000-0002-2315-514X
Angelo Ravelli http://orcid.org/0000-0001-9658-0385
Daniel Aletahe http://orcid.org/0000-0003-2108-0030
Alexei A. Grom http://orcid.org/0000-0001-5717-136X
Kim E. Nichols http://orcid.org/0000-0002-5581-6555
Grant Schulert http://orcid.org/0000-0001-5923-7051
Scott W. Canna http://orcid.org/0000-0003-3837-5337

REFERENCES

Expert consensus on dynamics of laboratory tests in adult HLH.

Downloaded from http://ard.bmj.com/ on December 2, 2023 by guest. Protected by copyright.
Recommendation

Supplemental Table 1 – Specialized Laboratory & Biomarker Testing in HLH/MAS

<table>
<thead>
<tr>
<th>Test</th>
<th>In HLH/MAS</th>
<th>Biology</th>
<th>Criteria</th>
<th>Monitoring Frequency</th>
<th>Prognostic Utility*</th>
<th>Caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Marrow Biopsy</td>
<td>↑</td>
<td>Identify HPCs, evaluate for malignancy</td>
<td>1, 3</td>
<td>n/a</td>
<td>✓</td>
<td>HPC visualization aided by CD163 IHC</td>
</tr>
<tr>
<td>NK-cell killing</td>
<td>↓</td>
<td>NK cell killing of cell line</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td>abnl in illness, meds, NK cytopenia</td>
</tr>
<tr>
<td>Procalcitonin</td>
<td>↑</td>
<td>Adipokine</td>
<td>prn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td>↑</td>
<td>Pleiotropic inflammatory cytokine</td>
<td>R, prn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNg</td>
<td>↑</td>
<td>Classic Type 1/Th1 cytokine</td>
<td>R, prn</td>
<td>✓</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Neopterin</td>
<td>↑</td>
<td>Metabolite of GTP, induced by IFNg</td>
<td>R, prn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD163</td>
<td>↑</td>
<td>Macrophage activation</td>
<td>prn</td>
<td>✓</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CD107a mobilization</td>
<td>↓</td>
<td>Functional test of degranulation</td>
<td>n/a</td>
<td></td>
<td></td>
<td>a.k.a. LAMP1</td>
</tr>
<tr>
<td>Flow cytometry</td>
<td>↓</td>
<td>Detect specific protein deficiency (e.g. Perforin, SAP, XIAP)</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HPC=hemophagocyte (macrophage that has engulfed other blood cells); IHC=immunohistochemistry; NK=Natural Killer; IL=Interleukin; IFNg=Interferon gamma

*Degree of abnormality and/or failure to improve correlated with worse outcomes

1=HLH-04, 2=MAS-2016, 3=H-score

F=frequent (e.g. daily), I=Intermittent (e.g. weekly), R=Rarely (e.g. monthly), PRN=as needed, n/a=not applicable
Supplemental Table 2: Comparison of HLH/MAS Criteria

<table>
<thead>
<tr>
<th>Test</th>
<th>HLH-04<sup>a</sup></th>
<th>MAS-2016<sup>b</sup></th>
<th>H-Score<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>✓</td>
<td>✓<sup>d</sup></td>
<td><38.4 / 38.4-39.4 / >39.4</td>
</tr>
<tr>
<td>Ferritin (ng/mL)</td>
<td>>500</td>
<td>>684<sup>d</sup></td>
<td><2000 / 2000-6000 / >6000</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>✓</td>
<td>Y/N</td>
<td></td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td></td>
<td>Y/N</td>
<td></td>
</tr>
<tr>
<td>Neutrophils (cells/uL)</td>
<td><1000<sup>b</sup></td>
<td></td>
<td>Leukocytes <1000</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td><9<sup>b</sup></td>
<td>>9.2</td>
<td></td>
</tr>
<tr>
<td>Platelet Count (10<sup>9</sup>/L)</td>
<td><100<sup>b</sup></td>
<td><182</td>
<td><110</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td></td>
<td>>48</td>
<td>>30</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>>265<sup>c</sup></td>
<td>>156</td>
<td><133 / 133-354 / >354<sup>d</sup></td>
</tr>
<tr>
<td>Fibrinogen (mg/dL)</td>
<td><150<sup>c</sup></td>
<td><361</td>
<td><250</td>
</tr>
<tr>
<td>Hemophagocytosis</td>
<td>✓</td>
<td>Y/N</td>
<td></td>
</tr>
<tr>
<td>Low/absent</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NK-cell killing</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soluble IL-2Ra (CD25) U/L</td>
<td>>2400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunosuppression</td>
<td></td>
<td>Y/N</td>
<td></td>
</tr>
<tr>
<td>Developed primarily in</td>
<td>children with primary and secondary HLH</td>
<td>sJIA-MAS</td>
<td>adults with cancer or infection</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>----------</td>
<td>---------------------------------</td>
</tr>
</tbody>
</table>

*5 of 8

*a as part of cytopenias affecting 2 or more lineages

'part of same criterion

*4 required, plus any 2 of 4 other parameters

*point system, see http://saintantoine.aphp.fr/score/

*converted from mmol/L

AST=aspartate aminotransferase; sJIA=systemic juvenile idiopathic arthritis
METHODOLOGY SUPPLEMENT

Part I. PICO questions

Part II. Systematic Literature Review search terms and filtering strategy

Part I. PICO Questions

TERMINOLOGY

PICO-1a: For patients in the early, undefined stages of possible HLH/MAS, what terminology compared to the term HLH/MAS best describes these patients?

P: For patients in the early, undefined stages of possible HLH/MAS,

I: Selecting terminology

C: Compared to the term HLH/MAS

O: Patient description

a. HLH/MAS
b. HLH/MAS Syndrome
c. Hyperinflammation
d. Hyperinflammatory Syndrome
e. HLH/MAS Spectrum Disorder
f. Hemophagocytic Syndrome
g. HLH/MAS-Like Syndrome
h. Inflammatory Immune Dysregulation
i. Hyperinflammatory Immune Dysregulation
j. Hemophagocytic Lymphohistiocytosis
k. Hyperinflammatory Lymphohistiocytosis
l. Cytokine Storm Syndrome
m. Hyperferritinemic Inflammation
n. Systemic Inflammation
o. Hyperferritinemic Systemic Inflammation
p. T Cell Activation Disorder
q. Hypercytokinemic Inflammatory Syndrome
PICO-1b: For patients with proven HLH/MAS, what terminology compared to the term HLH/MAS best describes these patients?

- **P:** For patients with proven diagnosis of HLH/MAS,
- **I:** Selecting terminology
- **C:** Compared to the term HLH/MAS
- **O:** Patient description

a. HLH/MAS
b. HLH/MAS Syndrome
c. Hyperinflammation
d. Hyperinflammatory Syndrome
e. HLH/MAS Spectrum Disorder
f. Hemophagocytic Syndrome
g. HLH/MAS-Like Syndrome
h. Inflammatory Immune Dysregulation
i. Hyperinflammatory Immune Dysregulation
j. Hemophagocytic Lymphohistiocytosis
k. Hyperinflammatory Lymphohistiocytosis
l. Cytokine Storm Syndrome
m. Hyperferritinemic Inflammation
n. Systemic Inflammation
o. Hyperferritinemic Systemic Inflammation
p. T Cell Activation Disorder
q. Hypercytokinemic Inflammatory Syndrome

PICO-1c: Which patients are suitable candidates for term macrophage activation syndrome to be terminology compared to the term HLH to indicate the pathophysiology?

- **P:** Patients with proven HLH/MAS
- **I:** Suitable for term “macrophage activation syndrome”,
- **C:** Compared to HLH
- **O:** Suitable terminology

a. Patients with rheumatologic disorders
b. Patients with autoinflammatory disorders
c. Patients with persistent and significant serum elevation of IL-18 levels.

PICO-1d: In patients with known genetic predisposition to HLH/MAS, what terminology best describes the inborn errors of immunity such as pathogenic variants of PRF1, UNC13D, STX11, STXBP2, RAB27A, LYST, SH2D1A, XIAP/BIRC4, CD27, and others as a predisposing factor for the development of HLH/MAS?

P: Patients with known genetic predisposition to HLH/MAS,
I: Describe the inborn errors of immunity
C: Compared to the term HLH/MAS
O: Best Terminology

a. Primary HLH
b. Genetic HLH
c. Primary HLH Disease
d. Genetic HLH Disease
e. Primary HLH Disorder
f. Genetic HLH Disorder

INITIAL SUSPICION

PICO-2: In acutely ill patients, what routine clinical/laboratory characteristics should raise concern for possible HLH/MAS compared to no HLH/MAS and prompt further work up?

P: Acutely ill patients
I: Clinical/laboratory characteristics that raise concern for possible HLH/MAS
C: Patients without HLH/MAS
O: Identify tests that can prompt further work up for HLH/MAS?

a. Persistent fever
b. Cytopenias in at least two lineage
c. Inappropriately low WBC and/or platelet counts relative to the degree of inflammation
d. Hepatitis or liver failure
e. Coagulopathy
f. Encephalopathy or seizures of unknown cause
g. Splenomegaly
h. Hepatomegaly
i. Elevated CRP
j. Elevated ESR
k. Elevated Ferritin
l. Known immunologic disorder
m. Known infection or malignancy

FERRITIN

PICO-3a: In patients with suspected HLH/MAS, can we use elevation of ferritin compared to non-elevation to identify patients more likely to have a syndrome of HLH/MAS?

- **P**: Patients with suspected HLH/MAS
- **I**: Ferritin measurement
- **C**: Patients without HLH/MAS
- **O**: Screening of HLH/MAS

PICO-3b: In patients with suspected HLH/MAS, what ferritin level elevation compared to values below that threshold strengthens the likelihood of a syndrome of HLH/MAS?

- **P**: Patients with suspected HLH/MAS
- **I**: Minimum ferritin level
- **C**: Other causes of elevated ferritin level.
- **O**: Higher likelihood of HLH/MAS?

 - a. Ferritin >500
 - b. Ferritin >684
 - c. Ferritin >1,000
 - d. Ferritin >2,000
 - e. Ferritin >10,000
 - f. No firm diagnostic threshold can be used for all patients.
 - g. Other [free text]

PICO3c: In patients suspected of HLH/MAS, is an elevated ferritin alone compared to grouped with other HLH related biomarkers such as soluble IL-2R a sufficient and reasonable screening test to trigger HLH work-up (and conversely, does a normal ferritin mean rule out the need for HLH/MAS work up).

- **P**: Patients suspected of HLH/MAS
- **I**: Measurement of ferritin
- **C**: Compared to ferritin grouped with other HLH related biomarkers such as soluble IL-2R
O: Serve as sufficient and reasonable screening test for HLH/MAS

PICO-4: In patients with suspected HLH/MAS and an elevated ferritin, which laboratory investigations are essential for general clinicians to obtain during the initial evaluation compared to specialty labs or invasive evaluations that are informative but not essential or not readily available to further strengthen the likelihood of a diagnosis of a syndrome of HLH/MAS.

P: Patients with suspected HLH/MAS and elevated ferritin

I: Essential laboratory investigations

C: Compared to specialty labs or invasive evaluations that are informative but not essential or not readily available

O: To further strengthen the likelihood of a diagnosis of a syndrome of HLH/MAS?

- CBC + Differential
- Liver Panel (AST, ALT, Bilirubin, GGT)
- ESR
- CRP
- Soluble IL-2R
- Triglycerides
- Fibrinogen
- LDH
- Ddimer
- Bone marrow aspirate and biopsy
- NK cell function (Cr51 release assay)
- T cell HLA-DR expression
- Soluble CD163
- Neopterin
- CXCL9
- IL-18
- Perforin
- CD107a
- SAP
- XIAP

ETIOLOGIC WORK-UP

PICO-5: In patients with presumed HLH/MAS, which triggering factor(s), should be immediately investigated compared to standard assessments (i.e. vital signs, standard tests) to establish contributors to the development of a syndrome of HLH/MAS?
P: In patients with presumed HLH/MAS

I: Immediate investigation of underlying condition(s) and/or triggering factor(s), stratified by clinical and geographic indications

C: Standard assessment (i.e. vital signs, standard tests)

O: to establish factors contributing to the development of a syndrome of HLH/MAS?

1. Blood Culture
2. Urine Culture (if symptomatic or young child)
3. EBV PCR
4. CMV PCR
5. HHV6 Plasma PCR
6. Adenovirus PCR
7. HSV PCR
8. HIV testing
9. SARS-CoV-2 PCR during pandemic
10. Influenza PCR if symptomatic and appropriate season
11. Histoplasma urine antigen if appropriate geographic location or travel history
12. Leishmania PCR testing if appropriate geographic location or travel history
13. Tick-borne illness testing if appropriate geographic location/season
14. Peripheral smear and bone marrow aspirate and biopsy to evaluate for lymphoma and leukemia if cytopenias are present
15. Imaging studies of the brain, neck, chest, abdomen, and pelvis to evaluate for infections and malignancies
16. Appropriate investigations of any imaging abnormalities that are suspicious for malignancy or infection
17. ANA
18. Lymphocyte subsets
19. Neutrophil oxidative burst
20. IgG
21. Perforin protein expression testing
22. CD107a testing
23. Urine organic acids
24. Plasma amino acids
25. SAP protein expression testing (male patients)
26. XIAP protein expression testing (male patients)
27. IL-18 if not previously done
28. CXCL9 if not previously done
29. Interferon alpha and/or beta

GENETIC TESTING
PICO-6a: In patients with presumed HLH/MAS, which patient or clinical features should prompt testing for an underlying genetic cause of HLH/MAS predisposition?

- **P:** In patients with presumed HLH/MAS,
- **I:** Patient characteristics or clinical features
- **C:** Absence of patient or disease features
- **O:** Support genetic testing for an underlying genetic cause of HLH/MAS
 - a. Severe disease
 - b. Recurrent disease (history of 2 or more episodes)
 - c. Refractory disease
 - d. Suggestive family history
 - e. Albinism
 - f. History of recurrent infections
 - g. History of progressive or persistent neurologic dysfunction, developmental delay, or hearing loss
 - h. History of previous inflammatory problems such as inflammatory bowel disease

PICO-6b: In patients with presumed HLH/MAS, patients in which age category may benefit from genetic testing due to genetic disorder associated with a predisposition to HLH/MAS compared to not likely to have a genetic disorder and suggest that genetic testing should be pursued?

- **P:** In patients with presumed HLH/MAS,
- **I:** Age category likely to have a genetic disorder as a predisposition to HLH/MAS
- **C:** Compared to patients without genetic predisposition to HLH/MAS
- **O:** Get genetic testing
 - a. Infants
 - b. Children
 - c. Adolescents
 - d. Young Adults
 - e. Adults

PICO-6c: In patients with presumed HLH/MAS requiring genetic testing, which approach to genetic testing is most appropriate to establish a potential underlying genetic disorder?

- **P:** In patients with presumed HLH/MAS requiring genetic testing
- **I:** Most appropriate genetic testing
- **C:** Lower yield genetic testing
- **O:** To establish a potential underlying genetic disorder
a. NGS Panel to evaluate genes that are considered as causes of genetic HLH diseases at the time of testing
b. NGS Panel to evaluate genes that cause inborn errors of immunity (including primary immune deficiencies, primary immune regulatory diseases, and autoinflammatory diseases) other than those considered as causes of genetic HLH diseases at the time of testing
c. NGS Panel to evaluate genes that cause inborn errors of metabolism
d. Whole exome or whole genome sequencing

PICO-6d: In patients with suspected HLH/MAS, should the following clinical features or medical center capability/access to NGS testing versus absence of these features or capabilities lead to genetic testing for limited single gene or few gene testing in place of NGS panel testing?

P: In patients with suspected HLH/MAS,

I: should the following clinical features or medical center capability/access to NGS testing

C: versus absence of these features or capabilities

O: lead to genetic testing for limited single gene or few gene testing in place of NGS panel testing?

Pigment abnormality

Inflammatory Bowel Disease

Presence of Lymphoma

Family history of a specific genetic disorder

Lack of access to NGS Testing Panels or Whole Exome or Whole Genome testing

DISEASE PROGNOSIS/SEVERITY

PICO-7a: In patients with a clinical diagnosis of the syndrome of HLH/MAS, the presence of which clinical manifestations versus their absence suggest poor prognosis?

P: Patients with suspected HLH/MAS

I: Clinical features at presentation

C: Absence of these features

O: Indicative of poor prognosis (higher mortality, increased length of admission, long term sequelae, longer ICU stay)

1. Underlying Active Lymphoma
2. Active Malignancy other than lymphoma
3. CNS involvement
4. Need for ICU admission at the time of presentation
e. Renal failure at presentation
f. Underlying rheumatic disease other than sJIA and Still’s (Lupus, Dermatomyositis, and Vasculitis)
g. Prior Immune suppressive medication use (malignancy, transplant, autoimmune diseases)
h. Liver Failure
i. Multiple Organ Dysfunction (more than 1 organ failure)
j. Presence of EBV infection
k. Other infections

PICO-7b: In patients with a clinical diagnosis of a syndrome of HLH/MAS, the presence of which laboratory biomarker observations may indicate worsening disease?

- **P:** Patients with a clinical diagnosis of HLH/MAS
- **I:** Laboratory or biomarker abnormality
- **C:** Normal or expected value
- **O:** Indicative of disease worsening
 - a. High or rising CRP
 - b. New or worsening DIC markers (d-dimer, PT/INR, Fibrinogen,…)
 - c. High or rising LDH
 - d. High or rising liver enzymes (AST, ALT) or bilirubin
 - e. High or rising ferritin
 - f. Low or dropping platelet count
 - g. Low or dropping WBC
 - h. Low or dropping neutrophil count
 - i. High or rising IL-18 (when/where available)
 - j. High or rising soluble IL-2R (when/where available)
 - k. High or rising CXCL9 (when/where available)

CNS DISEASE

PICO-9a: In patients with probable HLH/MAS, which of the following factors suggest that patients should be screened for CNS involvement, versus not, to establish the presence or absence of CNS disease?

- **P:** Patients with probable HLH/MAS
- **I:** Suggestive findings of CNS involvement
- **C:** No clinical CNS features
- **O:** Presence of CNS disease
a. Age 2-5 years
b. Age 6-10 years
c. Age 11-18 years
d. Adults
e. Seizures
f. Encephalopathy/Altered Mental Status/Irritability
g. Meningismus
h. Headaches
i. Vision Changes
j. Motor Defects
k. Known Genetic HLH Disease (PRF1, UNC13D, etc)

PICO-9b: In early HLH/MAS patients who are screened for CNS involvement, screening with the following tests, versus not, should be performed.

P: Patients with early HLH/MAS screened for CNS involvement
I: Which tests
C: No testing
O: CNS disease diagnosis
 a. Brain MRI
 b. Spine MRI
 c. Lumbar puncture for cell count, differential, glucose, ...
 d. Lumbar puncture for pathologic review
 e. EEG

EARLY TREATMENT

PICO-10a: In patients with early suspected or probable HLH/MAS syndrome, what clinical/laboratory features, versus their absence, indicate the need for treatment of HLH/MAS syndrome despite ongoing diagnostic workup?

P: Patients with early, suspected, or probable HLH/MAS
I: Clinical/laboratory features
C: No specific features
O: Need for early treatment
 a. Any organ failure (respiratory, cardiac, CNS, renal, liver)
 b. Rapidly or persistently worsening liver function
c. Rapidly or persistently worsening coagulopathy
d. Rapidly or persistently worsening CNS disease
e. Rapidly or persistently worsening cytopenias
f. Need for ICU admission
g. Rapidly or persistently rising ferritin
h. Rapidly or persistently rising CRP
i. Rapidly or persistently rising soluble IL-2R
j. Underlying known rheumatic disease
k. Underlying known malignancy
l. Underlying known genetic HLH disorder
m. Underlying known inborn error of immunity that may contribute t...
n. Underlying known metabolic disease

PICO-10b: In patients with early suspected or probable HLH/MAS syndrome, which evaluations should be completed prior to treatment with glucocorticoids, chemotherapy, or lymphodepleting therapies, versus not completed, to avoid hindering diagnostics for malignancy?

P: Patients with early, suspected, or probable HLH/MAS
I: Evaluations completed before start of specific treatments
C: No specific pre-treatment testing
O: Avoid hindering treatment.

a. If cytopenias are present, peripheral smear and bone marrow aspirate and biopsy
b. Imaging studies of the brain, neck, chest, abdomen, and pelvis to evaluate for infection and malignancy
c. Biopsy of any imaging abnormality suspected to be malignant

PICO-10c: In patients with early suspected or probable HLH/MAS syndromes undergoing evaluations including infectious and malignancy evaluations, what therapeutics are appropriate to give (if available), versus not appropriate, to improve patient status with the least likelihood of causing harm or hindering diagnostics?

P: Patients with early, suspected, or probable HLH/MAS undergoing diagnostic work-up
I: Appropriate treatments
C: therapeutics that increase likelihood of harm or hinder diagnosis
O: improve patient status
a. Dexamethasone
b. Methylprednisolone or prednisone
c. IVIG
d. Anakinra
e. Etoposide
f. Ruxolitinib
g. Emapalumab
h. Tocilizumab
i. ATG
j. Alemtuzumab
k. Cyclosporine
l. Tacrolimus
m. Plasmapheresis

PICO-10d: In patients treated for suspected or probable syndrome of HLH/MAS, which of the following tests should be included in regular monitoring of disease activity, compared to symptom-driven evaluation only, to monitor treatment response and flares?

<table>
<thead>
<tr>
<th>P: Patients with early, suspected, or probable HLH/MAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: Regular testing</td>
</tr>
<tr>
<td>C: Symptom-driven testing</td>
</tr>
<tr>
<td>O: Monitor treatment response and flares</td>
</tr>
</tbody>
</table>

- a. CBC + differential
- b. Liver Panel (ALT, AST, Bilirubin, GGT)
- c. Ferritin
- d. ESR
- e. CRP
- f. Soluble IL-2R
- g. Triglycerides
- h. Fibrinogen
- i. LDH
- j. Bone marrow aspirate and biopsy in the setting of cyto...
- k. NK cell function (Cr-51 release assay)
- l. T cell HLA-DR expression
- m. Soluble CD163
- n. Neopterin
- o. CXCL9
- p. IL-18
- q. Serial physical assessment of hepatosplenomegaly
- r. PT/INR
s. Monitoring of need for invasive support measures (int...

t. Monitoring of need for blood products (increase or de...

u. Temperature monitoring

MULTIDISCIPLINARY APPROACH

PICO-11a: For patients with suspected or probable HLH/MAS syndrome, should the evaluation and care be led by a multidisciplinary HLH/MAS expert team, compared to individual non-specialist physicians, to optimize diagnostics and care?

P: Patients with early, suspected, or probable HLH/MAS

I: Evaluation and Care by Multi-disciplinary Expert Team

C: Individual specialist or nonspecialist.

O: Optimize diagnostics and care.

PICO-11b: In patients with suspected or probable HLH/MAS syndrome, does a multi-disciplinary HLH/MAS team that routinely includes the following members, versus their absence, best fulfill the needs of patients with HLH/MAS?

P: Patients with early, suspected, or probable HLH/MAS

I: Predefined specialists/experts in the multi-disciplinary team

C: non-specific group of specialists/experts

O: Best address the clinical care needs of the patients.

a. Hematologist/oncologist

b. Immunologist

c. Rheumatologist

d. Infectious disease physician

e. Neurologist

f. Intensivist

g. Geneticist

h. Genetic counselor

i. Social Worker

j. Nurse care manager or mid-level nurse practitioner

k. Pharmacist
Part II.

Flow Chart of HLH/MAS Systematic Literature Review

- hemophagocytosis (title) or hemophagocytic syndrome (title) or hemophagocytic lymphohistiocytosis (title) or macrophage activation syndrome (title) or hyperferritinemia (title) or high ferritin (title) or hyperferritinemic (title) or cytokine storm (title) or hyperinflammatory (title) or HLH (title) or MAS (title) or hyperferritinaemia (title) or hyperferritinaemic (title) or haemophagocytosis (title) or haemophagocytic syndrome (title) or haemophagocytic lymphohistiocytosis (title)*

Total: 18,020
- PubMed: 7,560
- Embase: 10,261
- Cochrane: 199

Duplicates: 5,566

Unique Articles for Title Review
- N= 12,606

Candidate Articles N= 425
- For Abstract Review

Original, Relevant, English, Human.
- N= 258

General Data Extraction
- N= 167

Excluded on abstract review (relevance): 166

Excluded on full article review (relevance, reported data): 91

Preliminary Exclusion: 12,181
- Non-English: 1,748
- Reviews, Commentaries, Editorials, Conference Abstracts: 3,213
- Unrelated, non-Human: 3,867
- Case Reports, small series <6: 3,353

*Performed 5 November 2020
REFERENCES

SUPPLEMENTAL FIGURES/TABLES

Supplemental Table 1 – Specialized Laboratory & Biomarker Testing in HLH/MAS

<table>
<thead>
<tr>
<th>Test</th>
<th>In HLH/MAS</th>
<th>Biology</th>
<th>Criteria</th>
<th>Monitoring Frequency</th>
<th>Prognostic Utility*</th>
<th>Caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Marrow Biopsy</td>
<td>↑</td>
<td>Identify HPCs, evaluate for malignancy</td>
<td>1, 3</td>
<td>n/a</td>
<td>✓</td>
<td>HPC visualization aided by CD163 IHC</td>
</tr>
<tr>
<td>NK-cell killing</td>
<td>↓</td>
<td>NK cell killing of cell line</td>
<td>1</td>
<td>n/a</td>
<td>abnl in illness, meds, NK cytopenia</td>
<td></td>
</tr>
<tr>
<td>Procalcitonin</td>
<td>↑</td>
<td>Adipokine</td>
<td>prn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td>↑</td>
<td>Pleiotropic inflammatory cytokine</td>
<td>R, prn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNg</td>
<td>↑</td>
<td>Classic Type 1/Th1 cytokine</td>
<td>R, prn</td>
<td>✓</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Neopterin</td>
<td>↑</td>
<td>Metabolite of GTP, induced by IFNg</td>
<td>R, prn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD163</td>
<td>↑</td>
<td>Macrophage activation</td>
<td>prn</td>
<td>✓</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CD107a mobilization</td>
<td>↓</td>
<td>Functional test of degranulation</td>
<td>n/a</td>
<td></td>
<td>a.k.a. LAMP1</td>
<td></td>
</tr>
<tr>
<td>Flow cytometry</td>
<td>↓</td>
<td>Detect specific protein deficiency (e.g. Perforin, SAP, XIAP)</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HPC = hemophagocyte (macrophage that has engulfed other blood cells); IHC = immunohistochemistry; NK = Natural Killer; IL = Interleukin; IFNg = Interferon gamma

*Degree of abnormality and/or failure to improve correlated with worse outcomes

1 = HLH-04, 2 = MAS-2016, 3 = H-score

F = frequent (e.g. daily), I = Intermittent (e.g. weekly), R = Rarely (e.g. monthly), PRN = as needed, n/a = not applicable
Supplemental Table 2: Comparison of HLH/MAS Criteria

<table>
<thead>
<tr>
<th>Test</th>
<th>HLH-04^{4a}</th>
<th>MAS-2016^{5}</th>
<th>H-Score^{6e}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>✓</td>
<td>✓^{d}</td>
<td><38.4 / 38.4-39.4 / >39.4</td>
</tr>
<tr>
<td>Ferritin (ng/mL)</td>
<td>>500</td>
<td>>684^{d}</td>
<td><2000 / 2000-6000 / >6000</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>✓</td>
<td>Y/N</td>
<td></td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td></td>
<td>Y/N</td>
<td></td>
</tr>
<tr>
<td>Neutrophils (cells/uL)</td>
<td><1000^{b}</td>
<td>Leukocytes <1000</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td><9^{b}</td>
<td><9.2</td>
<td></td>
</tr>
<tr>
<td>Platelet Count (10^9/L)</td>
<td><100^{b}</td>
<td><182</td>
<td><110</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td></td>
<td>>48</td>
<td>>30</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>>265^{c}</td>
<td>>156</td>
<td><133 / 133-354 / >354^{d}</td>
</tr>
<tr>
<td>Fibrinogen (mg/dL)</td>
<td><150^{c}</td>
<td><361</td>
<td><250</td>
</tr>
<tr>
<td>Hemophagocytosis</td>
<td>✓</td>
<td>Y/N</td>
<td></td>
</tr>
<tr>
<td>Low/absent NK-cell killing</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soluble IL-2Ra (CD25) U/L</td>
<td>>2400</td>
<td></td>
<td>Y/N</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td></td>
<td>Y/N</td>
<td></td>
</tr>
</tbody>
</table>
Developed primarily in children with primary and secondary HLH, sJIA-MAS, adults with cancer or infection.

- 5 of 8
- As part of cytopenias affecting 2 or more lineages
- Part of same criterion
- Required, plus any 2 of 4 other parameters
- Point system, see http://saintantoine.aphp.fr/score/
- Converted from mmol/L

AST = aspartate aminotransferase; sJIA = systemic juvenile idiopathic arthritis
METHODOLOGY SUPPLEMENT

Part I. PICO questions

Part II. Systematic Literature Review search terms and filtering strategy

Part I. PICO Questions

TERMINOLOGY

PICO-1a: For patients in the early, undefined stages of possible HLH/MAS, what terminology compared to the term HLH/MAS best describes these patients?

P: For patients in the early, undefined stages of possible HLH/MAS,

I: Selecting terminology

C: Compared to the term HLH/MAS

O: Patient description

a. HLH/MAS
b. HLH/MAS Syndrome
c. Hyperinflammation
d. Hyperinflammatory Syndrome
e. HLH/MAS Spectrum Disorder
f. Hemophagocytic Syndrome
g. HLH/MAS-Like Syndrome
h. Inflammatory Immune Dysregulation
i. Hyperinflammatory Immune Dysregulation
j. Hemophagocytic Lymphohistiocytosis
k. Hyperinflammatory Lymphohistiocytosis
l. Cytokine Storm Syndrome
m. Hyperferritinemic Inflammation
n. Systemic Inflammation
o. Hyperferritinemic Systemic Inflammation
p. T Cell Activation Disorder
q. Hypercytokinemic Inflammatory Syndrome
PICO-1b: For patients with proven HLH/MAS, what terminology compared to the term HLH/MAS best describes these patients?

P: For patients with proven diagnosis of HLH/MAS,

I: Selecting terminology

C: Compared to the term HLH/MAS

O: Patient description

- a. HLH/MAS
- b. HLH/MAS Syndrome
- c. Hyperinflammation
- d. Hyperinflammatory Syndrome
- e. HLH/MAS Spectrum Disorder
- f. Hemophagocytic Syndrome
- g. HLH/MAS-Like Syndrome
- h. Inflammatory Immune Dysregulation
- i. Hyperinflammatory Immune Dysregulation
- j. Hemophagocytic Lymphohistiocytosis
- k. Hyperinflammatory Lymphohistiocytosis
- l. Cytokine Storm Syndrome
- m. Hyperferritinemic Inflammation
- n. Systemic Inflammation
- o. Hyperferritinemic Systemic Inflammation
- p. T Cell Activation Disorder
- q. Hypercytokinemic Inflammatory Syndrome

PICO-1c: Which patients are suitable candidates for term macrophage activation syndrome o be terminology compared to the term HLH to indicate the pathophysiology?

P: Patients with proven HLH/MAS

I: Suitable for term “macrophage activation syndrome”,

C: Compared to HLH

O: Suitable terminology

- a. Patients with rheumatologic disorders
- b. Patients with autoinflammatory disorders
c. Patients with persistent and significant serum elevation of IL-18 levels.

PICO-1d: In patients with known genetic predisposition to HLH/MAS, what terminology best describes the inborn errors of immunity such as pathogenic variants of PRF1, UNC13D, STX11, STXBP2, RAB27A, LYST, SH2D1A, XIAP/BIRC4, CD27, and others as a predisposing factor for the development of HLH/MAS?

P: Patients with known genetic predisposition to HLH/MAS,

I: Describe the inborn errors of immunity

C: Compared to the term HLH/MAS

O: Best Terminology

a. Primary HLH
b. Genetic HLH
c. Primary HLH Disease
d. Genetic HLH Disease
e. Primary HLH Disorder
f. Genetic HLH Disorder

INITIAL SUSPICION

PICO-2: In acutely ill patients, what routine clinical/laboratory characteristics should raise concern for possible HLH/MAS compared to no HLH/MAS and prompt further work up?

P: Acutely ill patients

I: Clinical/laboratory characteristics that raise concern for possible HLH/MAS

C: Patients without HLH/MAS

O: Identify tests that can prompt further work up for HLH/MAS?

a. Persistent fever
b. Cytopenias in at least two lineage
c. Inappropriately low WBC and/or platelet counts relative to the degree of inflammation
d. Hepatitis or liver failure
e. Coagulopathy
f. Encephalopathy or seizures of unknown cause
g. Splenomegaly
h. Hepatomegaly
i. Elevated CRP
j. Elevated ESR
k. Elevated Ferritin
l. Known immunologic disorder
m. Known infection or malignancy

FERRITIN

PICO-3a: In patients with suspected HLH/MAS, can we use elevation of ferritin compared to non-elevation to identify patients more likely to have a syndrome of HLH/MAS?

P: Patients with suspected HLH/MAS
I: Ferritin measurement
C: Patients without HLH/MAS
O: Screening of HLH/MAS

PICO-3b: In patients with suspected HLH/MAS, what ferritin level elevation compared to values below that threshold strengthens the likelihood of a syndrome of HLH/MAS?

P: Patients with suspected HLH/MAS
I: Minimum ferritin level
C: Other causes of elevated ferritin level.
O: Higher likelihood of HLH/MAS?

a. Ferritin >500
b. Ferritin >684
c. Ferritin >1,000
d. Ferritin >2,000
e. Ferritin >10,000
f. No firm diagnostic threshold can be used for all patients.
g. Other [free text]

PICO3c: In patients suspected of HLH/MAS, is an elevated ferritin alone compared to grouped with other HLH related biomarkers such as soluble IL-2R a sufficient and reasonable screening test to trigger HLH work-up (and conversely, does a normal ferritin mean rule out the need for HLH/MAS work up).

P: Patients suspected of HLH/MAS
I: Measurement of ferritin
C: Compared to ferritin grouped with other HLH related biomarkers such as soluble IL-2R
PICO-4: In patients with suspected HLH/MAS and an elevated ferritin, which laboratory investigations are essential for general clinicians to obtain during the initial evaluation compared to specialty labs or invasive evaluations that are informative but not essential or not readily available to further strengthen the likelihood of a diagnosis of a syndrome of HLH/MAS.

P: Patients with suspected HLH/MAS and elevated ferritin

I: Essential laboratory investigations

C: Compared to specialty labs or invasive evaluations that are informative but not essential or not readily available

O: To further strengthen the likelihood of a diagnosis of a syndrome of HLH/MAS?

a. CBC + Differential
b. Liver Panel (AST, ALT, Bilirubin, GGT)
c. ESR
d. CRP
e. Soluble IL-2R
f. Triglycerides
g. Fibrinogen
h. LDH
i. Ddimer
j. Bone marrow aspirate and biopsy
k. NK cell function (Cr51 release assay)
l. T cell HLA-DR expression
m. Soluble CD163
n. Neopterin
o. CXCL9
p. IL-18
q. Perforin
r. CD107a
s. SAP
t. XIAP

ETIOLOGIC WORK-UP

PICO-5: In patients with presumed HLH/MAS, which triggering factor(s), should be immediately investigated compared to standard assessments (i.e. vital signs, standard tests) to establish contributors to the development of a syndrome of HLH/MAS?
P: In patients with presumed HLH/MAS

I: Immediate investigation of underlying condition(s) and/or triggering factor(s), stratified by clinical and geographic indications

C: Standard assessment (i.e. vital signs, standard tests)

O: to establish factors contributing to the development of a syndrome of HLH/MAS?

a. Blood Culture
b. Urine Culture (if symptomatic or young child)
c. EBV PCR
d. CMV PCR
e. HHV6 Plasma PCR
f. Adenovirus PCR
g. HSV PCR
h. HIV testing
i. SARS-CoV-2 PCR during pandemic
j. Influenza PCR if symptomatic and appropriate season
k. Histoplasma urine antigen if appropriate geographic location or travel history
l. Leishmania PCR testing if appropriate geographic location or travel history
m. Tick-borne illness testing if appropriate geographic location/season
n. Peripheral smear and bone marrow aspirate and biopsy to evaluate for lymphoma and leukemia if cytopenias are present
o. Imaging studies of the brain, neck, chest, abdomen, and pelvis to evaluate for infections and malignancies
p. Appropriate investigations of any imaging abnormalities that are suspicious for malignancy or infection
q. ANA
r. Lymphocyte subsets
s. Neutrophil oxidative burst
t. IgG
u. Perforin protein expression testing
v. CD107a testing
w. Urine organic acids
x. Plasma amino acids
y. SAP protein expression testing (male patients)
z. XIAP protein expression testing (male patients)
aa. IL-18 if not previously done
bb. CXCL9 if not previously done
c. Interferon alpha and/or beta

GENETIC TESTING
PICO-6a: In patients with presumed HLH/MAS, which patient or clinical features should prompt testing for an underlying genetic cause of HLH/MAS predisposition?

- **P:** In patients with presumed HLH/MAS,
- **I:** Patient characteristics or clinical features
- **C:** Absence of patient or disease features
- **O:** Support genetic testing for an underlying genetic cause of HLH/MAS
 - a. Severe disease
 - b. Recurrent disease (history of 2 or more episodes)
 - c. Refractory disease
 - d. Suggestive family history
 - e. Albinism
 - f. History of recurrent infections
 - g. History of progressive or persistent neurologic dysfunction, developmental delay, or hearing loss
 - h. History of previous inflammatory problems such as inflammatory bowel disease

PICO-6b: In patients with presumed HLH/MAS, patients in which age category may benefit from genetic testing due to genetic disorder associated with a predisposition to HLH/MAS compared to not likely to have a genetic disorders and suggest that genetic testing should be pursued?

- **P:** In patients with presumed HLH/MAS,
- **I:** Age category likely to have a genetic disorder as a predisposition to HLH/MAS
- **C:** Compared to patients without genetic predisposition to HLH/MAS
- **O:** Get genetic testing
 - a. Infants
 - b. Children
 - c. Adolescents
 - d. Young Adults
 - e. Adults

PICO-6c: In patients with presumed HLH/MAS requiring genetic testing, which approach to genetic testing is most appropriate to establish a potential underlying genetic disorder?

- **P:** In patients with presumed HLH/MAS requiring genetic testing
- **I:** Most appropriate genetic testing
- **C:** Lower yield genetic testing
- **O:** To establish a potential underlying genetic disorder
a. NGS Panel to evaluate genes that are considered as causes of genetic HLH diseases at the time of testing
b. NGS Panel to evaluate genes that cause inborn errors of immunity (including primary immune deficiencies, primary immune regulatory diseases, and autoinflammatory diseases) other than those considered as causes of genetic HLH diseases at the time of testing
c. NGS Panel to evaluate genes that cause inborn errors of metabolism
d. Whole exome or whole genome sequencing

PICO-6d: In patients with suspected HLH/MAS, should the following clinical features or medical center capability/access to NGS testing versus absence of these features or capabilities lead to genetic testing for limited single gene or few gene testing in place of NGS panel testing?

P: In patients with suspected HLH/MAS,

I: should the following clinical features or medical center capability/access to NGS testing

C: versus absence of these features or capabilities

O: lead to genetic testing for limited single gene or few gene testing in place of NGS panel testing?

Pigment abnormality
Inflammatory Bowel Disease
Presence of Lymphoma
Family history of a specific genetic disorder
Lack of access to NGS Testing Panels or Whole Exome or Whole Genome testing

DISEASE PROGNOSIS/SEVERITY

PICO-7a: In patients with a clinical diagnosis of the syndrome of HLH/MAS, the presence of which clinical manifestations versus their absence suggest poor prognosis?

P: Patients with suspected HLH/MAS

I: Clinical features at presentation

C: Absence of these features

O: Indicative of poor prognosis (higher mortality, increased length of admission, long term sequelae, longer ICU stay)

a. Underlying Active Lymphoma
b. Active Malignancy other than lymphoma
c. CNS involvement
d. Need for ICU admission at the time of presentation
e. Renal failure at presentation
f. Underlying rheumatic disease other than sJIA and Still’s (Lupus, Dermatomyositis, and Vasculitis)
g. Prior immune suppressive medication use (malignancy, transplant, autoimmune diseases)
h. Liver Failure
i. Multiple Organ Dysfunction (more than 1 organ failure)
j. Presence of EBV infection
k. Other infections

PICO-7b: In patients with a clinical diagnosis of a syndrome of HLH/MAS, the presence of which laboratory biomarker observations may indicate worsening disease?

- **P:** Patients with a clinical diagnosis of HLH/MAS
- **I:** Laboratory or biomarker abnormality
- **C:** Normal or expected value
- **O:** Indicative of disease worsening
 - a. High or rising CRP
 - b. New or worsening DIC markers (d-dimer, PT/INR, Fibrinogen,...)
 - c. High or rising LDH
 - d. High or rising liver enzymes (AST, ALT) or bilirubin
 - e. High or rising ferritin
 - f. Low or dropping platelet count
 - g. Low or dropping WBC
 - h. Low or dropping neutrophil count
 - i. High or rising IL-18 (when/where available)
 - j. High or rising soluble IL-2R (when/where available)
 - k. High or rising CXCL9 (when/where available)

CNS DISEASE

PICO-9a: In patients with probable HLH/MAS, which of the following factors suggest that patients should be screened for CNS involvement, versus not, to establish the presence or absence of CNS disease?

- **P:** Patients with probable HLH/MAS
- **I:** Suggestive findings of CNS involvement
- **C:** No clinical CNS features
- **O:** Presence of CNS disease
a. Age 2-5 years
b. Age 6-10 years
c. Age 11-18 years
d. Adults
e. Seizures
f. Encephalopathy/Altered Mental Status/Irritability
g. Meningismus
h. Headaches
i. Vision Changes
j. Motor Defects
k. Known Genetic HLH Disease (PRF1, UNC13D, etc)

PICO-9b: In early HLH/MAS patients who are screened for CNS involvement, screening with the following tests, versus not, should be performed.

P: Patients with early HLH/MAS screened for CNS involvement

I: Which tests

C: No testing

O: CNS disease diagnosis

- a. Brain MRI
- b. Spine MRI
- c. Lumbar puncture for cell count, differential, glucose, …
- d. Lumbar puncture for pathologic review
- e. EEG

EARLY TREATMENT

PICO-10a: In patients with early suspected or probable HLH/MAS syndrome, what clinical/laboratory features, versus their absence, indicate the need for treatment of HLH/MAS syndrome despite ongoing diagnostic workup?

P: Patients with early, suspected, or probable HLH/MAS

I: Clinical/laboratory features

C: No specific features

O: Need for early treatment

- a. Any organ failure (respiratory, cardiac, CNS, renal, liver)
- b. Rapidly or persistently worsening liver function
c. Rapidly or persistently worsening coagulopathy
d. Rapidly or persistently worsening CNS disease
e. Rapidly or persistently worsening cytopenias
f. Need for ICU admission
g. Rapidly or persistently rising ferritin
h. Rapidly or persistently rising CRP
i. Rapidly or persistently rising soluble IL-2R
j. Underlying known rheumatic disease
k. Underlying known malignancy
l. Underlying known genetic HLH disorder
m. Underlying known inborn error of immunity that may contribute t...
n. Underlying known metabolic disease

PICO-10b: In patients with early suspected or probable HLH/MAS syndrome, which evaluations should be completed prior to treatment with glucocorticoids, chemotherapy, or lymphodepleting therapies, versus not completed, to avoid hindering diagnostics for malignancy?

P: Patients with early, suspected, or probable HLH/MAS

I: Evaluations completed before start of specific treatments

C: No specific pre-treatment testing

O: Avoid hindering treatment.

 a. If cytopenias are present, peripheral smear and bone marrow aspirate and biopsy
 b. Imaging studies of the brain, neck, chest, abdomen, and pelvis to evaluate for infection and malignancy
 c. Biopsy of any imaging abnormality suspected to be malignant

PICO-10c: In patients with early suspected or probable HLH/MAS syndromes undergoing evaluations including infectious and malignancy evaluations, what therapeutics are appropriate to give (if available), versus not appropriate, to improve patient status with the least likelihood of causing harm or hindering diagnostics?

P: Patients with early, suspected, or probable HLH/MAS undergoing diagnostic work-up

I: Appropriate treatments

C: Therapeutics that increase likelihood of harm of hinder diagnosis

O: Improve patient status
a. Dexamethasone
b. Methylprednisolone or prednisone
c. IVIG
d. Anakinra
e. Etoposide
f. Ruxolitinib
g. Emapalumab
h. Tocilizumab
i. ATG
j. Alemtuzumab
k. Cyclosporine
l. Tacrolimus
m. Plasmapheresis

PICO-10d: In patients treated for suspected or probable syndrome of HLH/MAS, which of the following tests should be included in regular monitoring of disease activity, compared to symptom-driven evaluation only, to monitor treatment response and flares?

P: Patients with early, suspected, or probable HLH/MAS
I: Regular testing
C: Symptom-driven testing
O: Monitor treatment response and flares

a. CBC + differential
b. Liver Panel (ALT, AST, Bilirubin, GGT)
c. Ferritin
d. ESR
e. CRP
f. Soluble IL-2R
g. Triglycerides
h. Fibrinogen
i. LDH
j. Bone marrow aspirate and biopsy in the setting of cyto...
k. NK cell function (Cr-51 release assay)
l. T cell HLA-DR expression
m. Soluble CD163
n. Neopterin
o. CXCL9
p. IL-18
q. Serial physical assessment of hepatosplenomegaly
r. PT/INR
s. Monitoring of need for invasive support measures (int...

t. Monitoring of need for blood products (increase or de...

u. Temperature monitoring

MULTIDISCIPLINARY APPROACH

PICO-11a: For patients with suspected or probable HLH/MAS syndrome, should the evaluation and care be led by a multidisciplinary HLH/MAS expert team, compared to individual non-specialist physicians, to optimize diagnostics and care?

- **P:** Patients with early, suspected, or probable HLH/MAS
- **I:** Evaluation and Care by Multi-disciplinary Expert Team
- **C:** Individual specialist or nonspecialist.
- **O:** Optimize diagnostics and care.

PICO-11b: In patients with suspected or probable HLH/MAS syndrome, does a multi-disciplinary HLH/MAS team that routinely includes the following members, versus their absence, best fulfill the needs of patients with HLH/MAS?

- **P:** Patients with early, suspected, or probable HLH/MAS
- **I:** Predefined specialists/experts in the multi-disciplinary team
- **C:** non-specific group of specialists/experts
- **O:** Best address the clinical care needs of the patients.

 a. Hematologist/oncologist
 b. Immunologist
 c. Rheumatologist
 d. Infectious disease physician
 e. Neurologist
 f. Intensivist
 g. Geneticist
 h. Genetic counselor
 i. Social Worker
 j. Nurse care manager or mid-level nurse practitioner
 k. Pharmacist

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Part II.

Flow Chart of HLH/MAS Systematic Literature Review

hemophagocytosis (title) or hemophagocytic syndrome (title) or hemophagocytic lymphohistiocytosis (title) or macrophage activation syndrome (title) or hyperferritinemia (title) or high ferritin (title) or hyperferritinemic (title) or cytokine storm (title) or hyperinflammatory (title) or HLH (title) or MAS (title) or hyperferritinaemia (title) or hyperferritinaemic (title) or haemophagocytosis (title) or haemophagocytic syndrome (title) or haemophagocytic lymphohistiocytosis (title)*

Total: 18,020
PubMed: 7,560
Embase: 10,261
Cochrane: 199

Duplicates: 5,566

Unique Articles for Title Review
N= 12,606

Candidate Articles N= 425
For Abstract Review

Original, Relevant, English, Human.
N= 258

Excluded on abstract review
(relevance): 166

General Data Extraction
N= 167

Excluded on full article review
(relevance, reported data,): 91

*Performed 5 November 2020
REFERENCES

 https://doi.org/10.1111/j.1365-2141.2009.07957.x

 https://doi.org/10.1002/pbc.27909

 https://doi.org/10.1002/pbc.21039

 https://doi.org/10.1002/art.39332

 https://doi.org/10.1002/art.38690