Table 1. Prediction of flare within 16 weeks after tapering to 2/3 dose (n=74)

<table>
<thead>
<tr>
<th>Values are from point of tapering from full dose to 2/3 dose</th>
<th>Univariate analyses</th>
<th>Final multivariable analyses*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>Male gender</td>
<td>0.96 (0.25 - 4.14)</td>
<td>0.955</td>
</tr>
<tr>
<td>Age</td>
<td>1.00 (0.96 - 1.04)</td>
<td>0.880</td>
</tr>
<tr>
<td>Time since diagnosis</td>
<td>1.00 (0.95 - 1.06)</td>
<td>0.863</td>
</tr>
<tr>
<td>Current smoker</td>
<td>0.70 (0.20 - 2.20)</td>
<td>0.543</td>
</tr>
<tr>
<td>HLA-B27 positive</td>
<td>0.66 (0.18 - 2.41)</td>
<td>0.515</td>
</tr>
<tr>
<td>Previous DMARDs</td>
<td>1.28 (0.66 - 2.49)</td>
<td>0.458</td>
</tr>
<tr>
<td>Patient pain VAS</td>
<td>1.02 (0.98 - 1.06)</td>
<td>0.310</td>
</tr>
<tr>
<td>Physician global VAS</td>
<td>1.19 (1.04 - 1.41)</td>
<td>0.012</td>
</tr>
<tr>
<td>mNYC positive</td>
<td>1.66 (0.70 - 4.10)</td>
<td>0.251</td>
</tr>
<tr>
<td>SPARCC SI Inflammation Index</td>
<td>1.01 (0.90 - 1.12)</td>
<td>0.861</td>
</tr>
<tr>
<td>CRP Total inflammation</td>
<td>0.95 (0.65 - 1.25)</td>
<td>0.702</td>
</tr>
<tr>
<td>SPARCC SSS Erosion</td>
<td>1.11 (0.91 - 1.37)</td>
<td>0.293</td>
</tr>
<tr>
<td>CANDEN Fat</td>
<td>0.99 (0.96 - 1.02)</td>
<td>0.705</td>
</tr>
<tr>
<td>AUC (95% CI)</td>
<td>0.66 (0.54 - 0.78)</td>
<td></td>
</tr>
</tbody>
</table>

Predictors were selected by applying backward selection in stacked data. p-values by likelihood ratio tests. Bold indicates p-values<0.1 in univariate analyses. Predictors were selected by backward selection in stacked imputed datasets after applying a fixed weight to all observations, accounting for the average fraction of missing data across all variables under consideration.

*Results were derived in non-imputed data (no missing values in selected predictors). CI, confidence interval; mNYC, modified New York criteria; SI, sacroiliac joint; SPARCC SI inflammation, Spondyloarthritides Research Consortium of Canada Sacroiliac joint inflammation; SPARCC SSS, Spondyloarthritides Research Consortium of Canada Sacroiliac joint Structural Score; VAS, visual analogue scale.
OBJECTIVES: 1. RANDOMISED TRIAL

2-YEAR IMAGING OUTCOMES FROM A PHASE III RANDOMISED TRIAL

of sacroiliac joints (SIJ) eligible for the PREVENT study.1

-2 (Figure 1).

versus PBO at Wk 16 and Wk 52 with sustained reduction through Wk 104

Education Group, GSK, Takeda, Geurbet, Biogen, Radiobotics and Chondrometrics, Kasper

31 synodromophyte (≥1 vertebral unit scored by ≥1 reader). Among these

pt groups, respectively) were evaluated as mNY-positive at screening (pts

patients (pts) with non-vertebral axial spondyloarthritis (nr-axSpA) through 52 weeks in the

investigator-assessed scores were blinded to X-ray readings. SIJ scores were blinded to

on MRI in pts with active nr-axSpA.

scored as mNY-positive at Wk 104. In both groups, fewer pts progressed from

mNY-negative to mNY-positive than had a change in the opposite direction

from positive to negative, resulting in an overall negative net progression. Spinal

inflammation on MRI (Berlin score) was low at BL with a mean of 0.62 in SEC and 1.07 in PBO groups with no meaningful change up to Wk 104

(mean of 0.56, SEC). SEC reduced SIJ bone marrow oedema score versus PBO at Wk 16 and Wk 52 with sustained reduction through Wk 104 in the overall patient population, with greater reduction in pts with BL score >2 (Figure 1).

Conclusion: Most pts initially randomised to SEC or PBO showed no radio-

diagnostic progression through 2 years. There was some discrepancy between

independent blinded reading of the Berlin score at BL and Wk 52 (mean reduction of 0.82 in SEC and 1.07 in PBO) with no meaningful change from BL.

versus PBO at Wk 16 and Wk 52, respectively, and then remained stable through Wk 104.

Participants were those who completed the full 2-year treatment period in both SEC and PBO groups. Only pts with ≥1 synodromophyte at BL were included in the analysis.

DISCUSSION: There is a close relationship between the Berlin synodromophyte score and the radiographic and MR synodromophyte score. The Berlin score is more sensitive to early changes, while the MR score is better at detecting more chronic changes.

In conclusion, secukinumab 150 mg every 4 weeks showed significant improvement in SIJ inflammation and bone marrow oedema as assessed by X-ray and MRI over 2 years in the PREVENT study. The results support the use of secukinumab in the management of nr-axSpA with active synodromophyte.

REFERENCES:


Figure: Mean change in SIJ bone marrow oedema score by mNY in the overall population and in patients with baseline score ≥2 through Week 104.

Figures:

- Fig 1: Mean change in SIJ bone marrow oedema score by mNY in the overall population and in patients with baseline score ≥2 through Week 104.

- Fig 2: Change in total SIJ inflammation score by mNY group at Week 104.

- Fig 3: Change in SIJ synodromophyte score by mNY group at Week 104.

- Fig 4: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 5: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 6: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 7: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 8: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 9: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 10: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 11: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 12: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 13: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 14: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 15: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 16: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 17: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 18: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 19: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 20: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 21: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 22: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 23: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 24: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 25: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 26: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 27: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 28: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 29: Change in SIJ bone marrow oedema score by mNY group at Week 104.

- Fig 30: Change in SIJ bone marrow oedema score by mNY group at Week 104.