POS0290
THE EFFECTS OF TREATMENT RESPONSE AND RISK FACTOR TO INHIBIT THE CLINICAL RESPONSE IN PATIENTS WITH DIFFICULT-TO-TREAT RHEUMATOID ARTHRITIS TREATED WITH IL-6 RECEPTOR INHIBITOR, ABATACEPT AND JAK INHIBITOR
S. Anno1,2,3, T. Okada4, K. Mandai5, K. Orita6, Y. Yamada1, K. Mamoto1, T. Iida1,2,3, M. Tada4, K. Inou4, T. Koke5,6, H. Nakamura7, Osaka City University Medical School, Orthopaedic Surgery, Osaka, Japan; 2Osaka Saiseikai Nakatsu Hospital, Orthopaedic Surgery, Osaka, Japan; 3Yodogawa Christian Hospital, Orthopaedic Surgery, Osaka, Japan; 4Koryokai Hospital, Orthopaedic Surgery, Osaka, Japan; 5Takahiro Clinic, Orthopaedic Surgery, Osaka, Japan; 6Osaka General Hospital, Orthopaedic Surgery, Osaka, Japan; 7Osaka University Medical School, Center for Senile Degen erative Disorders (CSSD), Osaka, Japan; 8Shirahama Foundation for Health and Welfare, Search Institute for Bone and Arthritis Disease (SINBAD), Shirahama, Japan

Background: Recently, the disease activity of rheumatoid arthritis (RA) was improved due to the ‘treat-to-target’ strategy. However, some patients remain various symptoms despite recommended treatment was performed. Then, the term of ‘difficult-to-treat RA (D2TRA)’ is widely recognized. It is unknown how the difference of type of biological disease-modifying anti rheumatic drugs (bDMARDs)/Janus kinase inhibitor (JAKi) will affect clinical efficacy in patients with D2TRA. Moreover, the risk factor to inhibit the clinical response in patients with D2TRA is unknown.

Objectives: The aim of this study was to evaluate the treatment response in patients with D2TRA who were treated with interleukin 6 receptor inhibitor (IL-6Ri), abatacept and JAKI.

Methods: This study used the multicenter database included 673 RA patients treated with bDMARDs/JAKi (tocilizumab 240, sarilumab 67, abatacept 146, tofacitinib 101, baricitinib 83, upadacitinib 20, peficitinib 14, filgotinib 2). Two hundred forty-two patients were treated as first line bDMARDs/JAKi (IL-6Ri 117, abatacept 63, JAKi 62), 211 patients were treated as second line bDMARDs/ JAKi (IL-6Ri 117, abatacept 37, JAKi 57), 220 patients were treated as third and more bDMARDs/JAKi. In these 220 patients, 82 patients did not meet D2TRA criteria (IL-6Ri 42, abatacept 15, JAKi 25) and 138 patients met D2TRA criteria (IL-6Ri 31, abatacept 31, JAKi 76). In all patients, we analyzed 138 patients with D2TRA (113 female, mean age was 63.1 ± 13.7 years). Drug retention rate and effectiveness of bDMARDs/JAKi in patients with D2TRA were evaluated for 24 weeks. Multivariate linear regression analysis was performed to clarify the risk factors to inhibit the clinical response.

Results: Drug retention rate of patients with D2TRA at 24 weeks was 67.7% in IL-6Ri group, 74.2% in abatacept group, 61.8% in JAKi group. Drug retention rate in patients with D2TRA was not different between groups (IL-6Ri vs abatacept: p=0.86, IL-6Ri vs JAKi group: p=0.39, abatacept vs JAKi group: p=0.33). DAS28- CRP at 4, 12, 24 weeks decreased in all group (Figure 1). Abatacept showed lower improvement ratio of DAS28-CRP at 24 weeks compared to IL-6Ri group (IL-6Ri vs abatacept: p<0.01, IL-6Ri vs JAKi: p<0.01, abatacept vs JAKi: p=0.07). Good responder (defined as decrease in DAS28-CRP score > 1.2 with a score < 3.2) was 52.4% patients in IL-6Ri, 17.4% patients in abatacept, 29.8% patients in JAKi. SDAI and CDAI at 4, 12, 24 weeks decreased in all group (Figure 1). There were no differences between the groups in improvement ratio of SDAI (IL-6Ri vs abatacept: p=0.11, IL-6Ri vs JAKi: p=0.81, abatacept vs JAKi: p=0.08) and CDAI (IL-6Ri vs abatacept: p=0.31, IL-6Ri vs JAKi: p=0.08, abatacept vs JAKi: p=0.13) at 24 weeks. HAQ was 1.42, 1.15, 1.39 at baseline, 1.27, 1.07, 1.52 at 4 weeks, 1.17, 1.07, 1.17 at 12 weeks, 1.26, 1.06, 1.14 at 24 weeks in IL-6Ri group, abatacept and JAKi, respectively. Multivariate linear regression analysis revealed that high HAQ (β=0.28, p=0.02) and high dosage of glucocorticoid (β=0.67, p<0.01) inhibited the improvement of DAS28-CRP. Type of bDMARDs/JAKi (β=0.09, p=0.36) did not affect the DAS28-CRP improvement for 24 weeks.

Conclusion: Drug retention rate and clinical efficacy of D2TRA patients were not different among IL-6Ri, abatacept and JAKi. D2TRA patient with functional disorder and high dosage of glucocorticoid were risk factor to inhibit the clinical response.

Disclosure of Interests: None declared

Table 1. Multivariate linear regression analysis of risk factor to inhibit the clinical response in patients with D2TRA.

<table>
<thead>
<tr>
<th>β</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>-0.037</td>
<td>-0.025, 0.017</td>
</tr>
<tr>
<td>Male</td>
<td>-0.047</td>
<td>-0.788, 0.486</td>
</tr>
<tr>
<td>Disease durations (years)</td>
<td>-0.048</td>
<td>-0.028, 0.017</td>
</tr>
<tr>
<td>RF (U/ml)</td>
<td>-0.082</td>
<td>-0.004, 0.0002</td>
</tr>
<tr>
<td>Anti CCP antibody (U/ml)</td>
<td>0.111</td>
<td>-0.005, 0.002</td>
</tr>
<tr>
<td>DAS28-CRP</td>
<td>-0.093</td>
<td>-0.228, 0.042</td>
</tr>
<tr>
<td>HAQ</td>
<td>0.279</td>
<td>0.059, 0.717</td>
</tr>
<tr>
<td>MTX (mg/day)</td>
<td>0.136</td>
<td>-0.018, 0.081</td>
</tr>
<tr>
<td>Glucocorticoid dose (mg/day)</td>
<td>0.669</td>
<td>0.174, 0.324</td>
</tr>
<tr>
<td>Type of bDMARDs/JAKi</td>
<td>-0.088</td>
<td>-0.415, 0.151</td>
</tr>
</tbody>
</table>

POS0291
OLOKIZUMAB IMPROVED PATIENT REPORTED OUTCOMES IN TNF INCOMPLETE RESPONDER (TNF-IR) RHEUMATOID ARTHRITIS PATIENTS: RESULTS FROM THE PHASE 3 RANDOMIZED CONTROLLED TRIAL, CREDO 3
V. Strand1, E. Choy2, E. Nasonov3, T. Litsynska4, A. Lila5, S. Kuzikina5, M. Samsonov2, E. Feist5, 1Stanford University, Division of Immunology/Rheumatology, Palo Alto CA, United States of America; 2Cardiff University, CREAlE Centre, Section of Rheumatology, Cardiff, UK, United Kingdom; 3V.A. Nasonova Research Institute of Rheumatology, Rheumatology, Moscow, Russian Federation; 4V.A. Nasonova Research Institute of Rheumatology, Thromboimmune, Moscow, Russian Federation; 5R-Pharm, Medical, Moscow, Russian Federation; 6Helios Fachklinik Vogelsang-Gommern; Helios Clinic, Rheumatology, Vogelsang-Gommern, Germany

Background: Olokizumab (OKZ) is an interleukin-6-inhibitor for treatment of rheumatoid arthritis (RA). In these analyses we present patient reported outcomes (PROs) reported by TNF-IR patients with moderate to severely active RA receiving OKZ or placebo in a phase 3 randomized controlled trial (RCT) (ClinicalTrials.gov number, NCT02760433).

Objectives: To assess the effect of OKZ treatment compared with placebo in patient global assessment of disease activity (PGA), pain, physical function (HAO-DI), fatigue (FACIT-F) and health related quality of life (SF-36 physical (PCS) and mental (MCS)) component summary and domain scores) at 12 weeks.

Methods: 368 patients were randomized 2:2:1 to receive subcutaneously administered OKZ 64 mg every two weeks (q2w), OKZ 64 mg q4w, or placebo, plus self-reported medical information in a prospective cohort event monitoring system. Rheumatology (Oxford), 2020;59(6):1253-61.

Disclosure of Interests: Jette van Lin: None declared, Naomi Jessurun: None declared, Sander Tas Consultant of: Gebro, GSK, AbbVie, Galvani, Arthrogen/ MeiraGTx, Galapagos, Grant/research support from: Pfizer, GSK, Celgene, BMS, Genentech, AstraZeneca, Harald Voskamp, Speakers bureau: AbbVie, Celgene, BMS, Celgene, Galapagos, GSK, Janssen-Cilag, Lilly, Novartis, Pfizer, Roche, Sanofi-Genzyme, UCB, Grant/research support from: AbbVie, Sanofi-Genzyme, Frank Hoentjen Speakers bureau: served on advisory boards or as speaker for AbbVie, Janssen-Cilag, MSD, Takeda, Celtrion, Teva, Sanofi and Dr Falk, Consultant of: Celgene, Grant/research support from: Funding (Grants/Honoraria): AbbVie, Janssen-Cilag, AbbVie, Takeda, Martin van Doorn Speakers bureau: AbbVie, Janssen, LEO Pharma, Pfizer, Novartis, Paid instructor for: LEO Pharma, Consultant of: AbbVie, Janssen, LEO Pharma, Pfizer, Celgene, Novartis, TEVA, MSD, Sanofi, AstraZeneca, Grant/research support from: Novartis, Janssen, Michael Nurmohamed Speakers bureau: AbbVie, Janssen, Celgene, Consultant of: AbbVie, Grant/research support from: AbbVie, Amgen, Pfizer, Galapagos, BMS, Bart van den Bermt Speakers bureau: UCB, Pfizer, Sanofi-Aventis, Galapagos, Amgen en Eli Lilly

Table 1. Mean baseline values and LSM changes from baseline to week 12 for PROs

<table>
<thead>
<tr>
<th></th>
<th>OKZ q2w, N=138</th>
<th>OKZ q4w, N=161</th>
<th>Placebo, N=69</th>
<th>12 weeks LSM changes (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline, mean (standard deviation)</td>
<td></td>
<td></td>
<td>OKZ q2w, N=138</td>
</tr>
<tr>
<td>PIGA-VAS (mm)</td>
<td>64.8 (20.5)</td>
<td>68.1 (19.1)</td>
<td>72.1 (18.5)</td>
<td>-24.9 (2.1)</td>
</tr>
<tr>
<td>Pain-VAS (mm)</td>
<td>672 (19.5)</td>
<td>693 (19.1)</td>
<td>69.6 (21.9)</td>
<td>-28.2 (2.2)**</td>
</tr>
<tr>
<td>HAQ-DI</td>
<td>1.79 (0.53)</td>
<td>1.78 (0.56)</td>
<td>1.78 (0.64)</td>
<td>-0.40 (0.05)*</td>
</tr>
<tr>
<td>SF-36 PCS score</td>
<td>31.4 (6.8)</td>
<td>30.6 (7.2)</td>
<td>30.5 (6.9)</td>
<td>6.0 (0.7)**</td>
</tr>
<tr>
<td>SF-36 MCS score</td>
<td>44.3 (12.6)</td>
<td>44.5 (11.1)</td>
<td>45.1 (10.2)</td>
<td>4.1 (0.8)*</td>
</tr>
<tr>
<td>Physical functioning</td>
<td>29.9 (7.9)</td>
<td>29.8 (8.5)</td>
<td>29.6 (8.4)</td>
<td>6.1 (0.8)</td>
</tr>
<tr>
<td>Role physical</td>
<td>32.8 (6.9)</td>
<td>33.1 (7.4)</td>
<td>33.7 (6.8)</td>
<td>6.0 (0.7)</td>
</tr>
<tr>
<td>Bodily pain</td>
<td>34.5 (6.9)</td>
<td>33.2 (6.0)</td>
<td>33.0 (6.6)</td>
<td>8.5 (0.7)**</td>
</tr>
<tr>
<td>General health</td>
<td>38.3 (8.3)</td>
<td>36.5 (8.6)</td>
<td>36.9 (8.5)</td>
<td>4.7 (0.7)*</td>
</tr>
<tr>
<td>Vitality</td>
<td>40.8 (10.1)</td>
<td>40.7 (9.5)</td>
<td>41.1 (8.1)</td>
<td>5.7 (0.8)</td>
</tr>
<tr>
<td>Social functioning</td>
<td>38.8 (9.9)</td>
<td>38.7 (9.8)</td>
<td>39.6 (9.3)</td>
<td>6.7 (0.8)**</td>
</tr>
<tr>
<td>Role emotional</td>
<td>39.1 (12.5)</td>
<td>39.1 (12.2)</td>
<td>38.9 (11.1)</td>
<td>4.3 (0.9)*</td>
</tr>
<tr>
<td>Mental health</td>
<td>41.4 (11.6)</td>
<td>41.4 (10.5)</td>
<td>42.2 (10.3)</td>
<td>4.4 (0.8)</td>
</tr>
<tr>
<td>FACT/Gil- Fatigue</td>
<td>270 (10.2)</td>
<td>266 (10.6)</td>
<td>273 (9.9)</td>
<td>7.8 (0.9)*</td>
</tr>
</tbody>
</table>

Figure 1. SF-36 domain changes from baseline to week 12. *p<0.05, **p<0.01, ***p<0.001 for OKZ q2w vs placebo; *p<0.05, **p<0.01, ***p<0.001 for OKZ q4w vs placebo; AGNorms, age- and gender-matched normative values; BL, baseline.

Conclusion: Treatment with OKZ over 12 weeks resulted in statistically significant improvements in PROs vs placebo reported by TNF-IR RA patients. Benefits were more frequently reported by patients receiving OKZ q2w than q4w in this phase 3 RCT of limited size in treatment experienced patients.

Acknowledgements: R-Pharm funded this study; contributed to its design; participated in data collection, analysis, and interpretation of the data; and in the writing, review, and approval of the abstract. No honoraria or payments were made for authorship.

Disclosure of Interests: Vibeke Strand Consultant of: Abbvie, Amgen, Arena, AstraZeneca, Bayer, BMS, Boehringer, Ingelheim, Chemocentryx, Celtrion, Galapagos, Genentech/Roche, Gilead, GSK, Horizon, Inmedix, Janssen, Kinksa, Lilly, Novartis, Pfizer, Regeneron, Rheos, R-Pharm, Samsung, San-do, Sanofi, Scipher, Servier, Setpoint, Sorrento, Synthex, UCB, Ernesto,sky Consultant of: Abbvie, Amgen, Bristol Myer Squibbs, Chugai Pharma, Eli Lilly, Galapagos, Gilead, Janssen, Novartis, Pfizer, Regeneron, RPharm, Roche, Sanofi, and UCB., Grant/research support from: Bio-Cancer, Biogen, Novartis, Pfizer, Roche, Sanofi and UCB, Evgeny Nasonov Consultant of: AbbVie, Eli Lilly, Janssen, Novartis, Pfizer, Tatiana Listysyna: None declared, Alexander Lila Consultant of: Abbvie, Amgen, Bayer, Biotechnos, Eli Lilly, Galapagos, Gilead, Jans- sen, Novartis, Pfizer, RPharm, Roche, Sanofi, Stada, Viatris and UCB, Grant/ research support from: Novartis, Pfizer, Sofia Kuzkina Employee of: R-Pharm, Mikhail Samsonov Employee of: R-Pharm, Eugen Feist Consultant of: Abbvie, Eli Lilly, Galapagos, Medac, Novartis, Sanofi, Sobi, R-Pharm, Grant/research support from: Eli Lilly, Novartis, Pfizer

POS0292

INCREASE OF PRO-INFLAMMATORY CYTOKINES IS ASSOCIATED WITH ANTI-IDIOYPE EVENTS IN RHEUMATOID ARTHRITIS PATIENTS TREATED WITH INFlixIMAB OR ADALIMUMAB

D. X. Xibile Friedmann1, S. M. Carrillo Vazquez2, J. González Christen3, D. Vega Morales4, M. Garza Elizondo5, R. Hernández6, J. E. Ortiz Panozo2, J. L. Montiel Hernández2, 1Hospital General de Cuernavaca, Rheumatology, Cuernavaca, Mexico, 2Hospital Regional 1 de Octubre, Rheumatology, CDMX, Mexico, 3Universidad Autónoma de la Ciudad de México, Facultad de Farmacia, Cuernavaca, Mexico, 4Universidad Autónoma de Nuevo León, Rheumatology, Monterrey, Mexico, 5Hospital de Especialidades, Centro Médico Nacional S. XXI, Rheumatology, CDMX, Mexico, 6Instituto Nacional de Salud Pública, Epidemiology, Cuernavaca, Mexico

Background: A significant percentage of rheumatoid arthritis (RA) patients undergoing Infliximab (IFX) or Adalimumab (ADA) treatment develop antidrug antibodies with potential negative effects over their clinical activity; however, it is unknown if these anti-idiotpe events could be associated with changes in cytokines levels

Objectives: To evaluate the association between blood cytokine levels, anti-idio- type events and clinical activity in RA patients treated with IFX or ADA.

Methods: All patients complied with ACR/EULAR 2021 criteria for RA and received anti-TNFa agents. Blood samples were collected during the drug trough and kept at -75ºC until analysis. Clinical activity was based on DAS28-ESR. Specific anti-drug antibodies to IFX and ADA were evaluated by sandwich ELISA. Cytokine blood levels were quantified using a multiplex system or sandwich ELISA.

Results: 57 patients with RA were recruited, 17 treated with IFX and 40 with ADA. According to the presence of anti-drug antibodies and sub-optimal levels of the biologic drug, patients were classified as immunogenic (29.8%; n=17) and non-immunogenic (70.2%; n=40), the first showed significantly higher ESR (p<0.001) and DAS28 (p<0.009). A significant association was seen between antidrug antibodies and increases of IFNg (2.1 OR, C195%:1.2-3.8, p<0.01); MCP-1 (3.9 OR, C195%:1.1-14.5, p<0.05); MIF (2.8 OR, C195%:1.3-5.7, p<0.01) and TNFa 3.0 OR, C195%:1.3-6.6, p<0.01 (see Table 1). Although anti-idiotpe events were more frequent in IFX treated patients (41%), a significant difference was not seen when comparing with ADA treated patients (25%).