POSTER251

TRANSCRIPTOMIC CHANGES INDUCED BY MAVRILIMUMAB VS TOCILIZUMAB IN EX-VIVO CULTURED ARTERIES FROM PATIENTS WITH GIANT-CELL ARTERITIS

Background: Giant cell arteritis (GCA) is a chronic disease, and affected patients suffer from relapses and glucocorticoid (GC)-related toxicity. Targeted therapies are emerging with the aim of achieving better disease control and reducing GC exposure. Blocking IL-6 receptor with tocilizumab has been a major advance in the treatment of GCA. However, approximately 40% of patients treated with tocilizumab in combination with GCs experience a flare or tocilizumab-related adverse event. Blocking GM-CSF receptor α with mavrilimumab significantly reduced risk of relapse and improved sustained remission at week 26 vs placebo in a Phase 2 trial. Not all patients satisfactorily respond to any therapy, indicating heterogeneity in leading pathogenic pathways among patients. For these reasons, it is crucial to understand the specific impact of targeted therapies on vascular lesions.

Objectives: In this study we investigated transcriptomic changes induced by tocilizumab or mavrilimumab in ex-vivo cultured arteries from patients with GCA. Methods: Temporal artery sections obtained for diagnostic purposes from 11 patients with histopathologically-confirmed GCA and 3 controls were cultured ex-vivo and exposed to placebo, mavrilimumab, or tocilizumab (both at 20 µg/mL) for 5 days. Of 11 GCA donors, 2 had received no treatment prior to biopsy, 2 had received a single prednisone (60 mg) dose, 1 had received 2 daily doses, and the remaining 6 had extended treatment; in prednisone-treated patients, mean (SEM) treatment duration was 17.9 ±8.7 days. A separate cohort of patients (consisting of five newly diagnosed patients with GCA, age- and sex-matched with the previous cohort) was used to validate 7 transcripts by real time PCR. Genes were selected for validation based on high level of expression and differential expression with each treatment. All samples were homogenized, and total RNA was extracted with TRIzol reagent. 100 ng of RNA per sample were processed with Nanostring research support from: Research grant from Kiniksa; meeting attendance support from: Italfarmo and CSL Behring, José Hernández-Rodríguez: None declared, Georgina Espigol-Frigole: Consultant of: Consulting for Janssen and Abbvie, Grant/research support from: Research from grant to Kiniksa; meeting attendance support from Roche and Kiniksa.

Disclosure of Interests: Marc Corbera-Bellalta: None declared, Farah Kamberovic: None declared, Roser Alba-Rovira: None declared, Georgina Espigol-Frigole Consultant of: Consulting for Janssen and Hoffmann-La Roche; Grant/research support from: Meeting attendance support from Boehringer Ingelheim, Marco Alba: None declared, Sergio Prieto-González: None declared, Georgina Espigol-Frigole: Consultant of: Consulting for Janssen, GSK and Vifor, Consultant of: Consulting for Janssen, GSK, and Abbvie, Grant/research support from: Research from grant to Kiniksa; meeting attendance support from Roche and Kiniksa.

POSTER252

MYOFIBROBLASTS MAINTAIN TH1 AND TC1 POLARIZATIONS IN GIANT CELL ARTERITIS

H. Greigert1,2,3, A. Ramon1,4, C. Gerard1, C. Ciudad1, C. Cadiere1, C. Genet1, L. Arnould1, C. Creuzot-Garcher1, L. Martin1, G. Taris1, S. Audia1,2,3, M. C. Cid4, B. Bonnotte1,2, M. Samson1,2, Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France; 3Dijon University Hospital, Internal Medicine and Clinical Immunology, Dijon, France; 4Dijon University Hospital, Vascular Medicine, Dijon, France; 5Dijon University Hospital, Rheumatology, Dijon, France; 6Dijon University Hospital, Oncology, Dijon, France; 7Dijon University Hospital, Pathology, Dijon, France; 8University of Barcelona, Department of Autoimmune Diseases, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

Background: Giant cell arteritis (GCA) is a large-vascular vasculitis mainly involving the aorta and cranial arteries. It is the most frequent vasculitis in adults over 50 years. When they are stimulated by interferon-gamma (IFN-γ), vascular smooth muscle cells (VSMC) contribute to GCA pathogenesis by producing chemokines triggering the recruitment of pro-inflammatory T cells and monocytes (1). Objectives: Current knowledge about the interaction between resident cells of the vascular wall (VSMC, myofibroblasts [MF]) and immune cells is limited. The aim of our research was to better characterize the interactions between VSMC, MF and T cells in GCA.

Methods: Fresh fragments of temporal artery biopsies (TAB) performed at Dijon university hospital (France) were prospectively sent to our research unit. Paraffin sections of positive and negative TAB were fixed and embedded in optimal cutting temperature OCT and stored at -80°C. Then, cryostat sections were fixed, permeabilized, blocked and incubated with primary antibodies (anti-alpha smooth muscle actin [α-SMA], anti-myosin heavy chain 11 [MHCI1], anti-Desmin, anti CD90, anti-CD45, anti-HLA-DR, anti-phospho STAT1 [pSTAT1] and anti-pSTAT3) and secondary antibodies for confocal microscopy analyses. Fresh sections of healthy TAB were embedded in MATRIGEL and covered by DMEM to obtain vascular cells in culture. Cells were treated with trypsin-EDTA between each passage. Vascular cells were used after 4-7 doubling passages. Cells were analyzed by immunofluorescence, flow cytometry and RT-PCR and their proliferation was evaluated by impedance (iCELLigence system). Peripheral blood...
mononuclear cells (PBMC) and vascular cells thus obtained were co-cultured for 7 days in different conditions. Vascular cells were cultured in the presence or absence of IFN-γ and tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6) for 24 or 72 hours. When cells reached confluence, they were cultured alone or with allogenic PBMC activated with anti-CD3/CD28 microbeads. After 7 days of culture, cells were separated with a treatment with EDTA and studied by flow cytometry.

Results: Confocal microscopy analyses of GCA arteries showed that neointima was mainly composed of myofibroblasts (MF) (i.e., SMA+Desmin+MHC11lowCD90+) in contact with CD45+ cells and that MF expressed HLA-DR, the phosphorylated form of STAT1 (pSTAT1) and in a lesser extent pSTAT3, strongly suggesting the activation of the IFN-γ signaling pathway rather than the IL-6 pathway. The phenotype of cultured vascular cells isolated from fresh TAB was consistent with MF. When MF were exposed to IFN-γ and TNF-α in vitro, their proliferation capacity decreased and their levels of expression of HLA-DR and CD86 increased (median fluorescence intensity [MFI] from 0 to 57 [p=0.03] and from 34 to 103 [p=0.03], respectively). In addition, co-cultures of MF and activated PBMC revealed that MF maintained the polarization of T cells into Th1 and Tc1 cells (p<0.001) and to a lesser extent into Th17 and Tc17 cells (p=0.03). This effect was even more significant when MF were previously exposed to IFN-γ and TNF-α but not when they were exposed to IL-6.

Conclusion: Our results show that myofibroblasts are present in the neointima of GCA patients and that these MF activate signaling pathways indicative of IFN-γ exposure. Moreover, these MF, especially when exposed to IFN-γ, maintain the polarization of T cells into Th1 and Tc1 cells, which contributes to amplify the production of IFN-γ and thus initiate a pro-inflammatory amplification loop that likely participates in vascular inflammation and remodelling.

REFERENCES:

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2022-eular.3546

POS025

PERSONALIZED RISK ASSESSMENT FOR ANCA ASSOCIATED VASCULITIS (AAV) USING LATENT CLASS ANALYSIS AND MACHINE LEARNING.

K Wójcik1, A Cmiel1, T Sattawa1, S Lichota1, K Wawrzykow-Adamczyk1, G Biedroń1, A Masiak1, Z Zdrojewski1, H Storonik1, B Bullo-Piotrbecka1, A Dębeka-Szleniek1, R Jeleniewicz1, M Majdan1, K Jakuszk12, H Augustyniak-Bartosik1, M Krajewska1, I Brzosko13, M Brzosko13, J Kur-Zalewska13, W Tuskotuchowicz13, G Madel1, A Hawat-Kawecka13, K Kuchare14, P Głośko15, M Wilosinska15, J Milikowa-Dymanowska15, A Lewandowska-Polak16, J Makowka17, J Zalewska17, T Zubala18, M Milasz1, M Jakus1 on behalf of POLVASS. Jagiellonian University Medical College, 2nd Chair of Internal Medicine, Krakow, Poland; AGH University of Science and Technology, Faculty of Applied Mathematics, Krakow, Poland; Sano Centre for Computational Medicine, 2nd Chair for Computational Medicine, Krakow, Poland; Medical University of Gdańsk, Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Gdańsk, Poland; Medical University of Gdańsk, Department of Rheumatology, Nephropathy and Transplantation Diseases, Gdańsk, Poland; Medical University of Gdańsk, Department of Internal Medicine Geriatrics, Gdańsk, Poland; Medical University of Gdańsk, Department of Rheumatology and Connective Tissue Diseases, Lublin, Poland, Wrocław Medical University, Department of Nephropathy and Transplantation Medicine, Wrocław, Poland; Pomeranian Medical University, Individual Laboratory for Rheumatologic Diagnostics, Szczecin, Poland; Pomeranian Medical University, Department of Rheumatology Internal Medicine Geriatrics and Clinical Immunology, Szczecin, Poland; Military Medical Institute, Department of Internal Medicine and Rheumatology, Warszawa, Poland; Military Medical Institute, Clinical Research Support Center, Military Institute of Medicine, Warszawa, Poland; Medical University of Warsaw, Department of Rheumatology and Internal Medicine, Wrocław, Poland; Medical University of Silesia, Department of Internal Medicine and Metabolic Diseases, Katowice, Poland; Medical University of Silesia, Department of Internal Medicine and Rheumatology, Katowice, Poland; Narodowy Instytut Geriatrii, Reumatologii i Inwalidziów, w.o. med. Elbląski, Central Laboratory of Department of Rheumatology, Warszawa, Poland; Medical University of Łódź, Department of Pneumology, Łódź, Poland; Medical University of Łódź, Department of Rheumatology, Łódź, Poland; Medical College in Bydgoszcz, Department of Rheumatology and Connective Tissue Diseases, Bydgoszcz, Poland

Background: ANCA associated vasculitides (AAV) are a heterogeneous group of rare diseases with unknown etiology. In the most severe cases AAV can lead to end stage kidney disease or death. Since etiology and detailed pathogenesis of AAV is not known, the prediction of disease outcome at the time of diagnosis is challenging. Thus, there is an unmet need for tools to identify patients with the highest risk of organ dysfunction and death and apply effective personalized therapy.

Objectives: The aim of this work was to search for tools allowing outcome prediction at the time of AAV diagnosis. Early identification of patients, who are likely to develop severe organ dysfunction and death is crucial for appropriate disease management. Induction therapy in AAV relays on immunosuppressive drugs characterized by a high risk of severe side effects. Thus, their administration in high doses should be limited only to individual patients with an especially high risk of poor outcome.

Methods: We applied here two methods of identification of AAV patients at risk to develop severe organ dysfunction and death. First method (latent class analysis [LCA] followed by logistic regression) was meant to subcategorize patients and identify a subgroup at subjects at risk to develop chronic renal replacement therapy (CRRT) and death [1]. Second, served to assess individual patient outcome and was based on two machine learning (ML) classifiers, which by analyzing clinical information allow assigning computed risk for CRRT and death in an individual patient allowing to identify subjects with high risk of chronic replacement therapy (CRRT) and death. We have evaluated a number of different approaches to build the ML models (including logistic regression, support vector machines, random forests), and obtained the best results for the gradient boosting algorithm implementation called LightGBM [2]. It works as a sequential ensemble of so-called weak learners (decision trees) finally combined in a one prediction model. Both analyses were based on retrospective data from Polish national AAV registry (POLVASS) [3] including presently 565 GPA and 135 MPA patients. The parameters used were: demographic data and laboratory parameters, specific organ involvement, ANCA specificity and time between selected stages of the disease.

Results: LCA used on our AAV cohort identified four subphenotypes – three already previously proposed - and revealing a fourth clinically relevant subphenotype. This new subphenotype includes only GPA patients, usually diagnosed at a younger age as compared to other groups, and characterized by multorgan involvement, high relapse rate, relatively high risk of death, but no end-stage kidney disease. Logistic regression analysis revealed significant differences in the risk of CRRT and death between those subphenotypes – the worst prognosis was found for severe MPO AAV. On the other hand, using ML approach we obtained an individual prediction model with potentially relevant clinical performance (ROC AUC of 0.85 for CRRT and 0.82 for death).

Conclusion: We consider results obtained encouraging. They may offer a new insight into AAV course based on data available at diagnosis, and create a solid foundation for potential clinical decision support system.

REFERENCES:

Acknowledgements: This work was supported by a grant from Polish National Science Centre UMO-2018/31/B/NZ2/03988

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2022-eular.1089

POS024

IMMUNE RESPONSE TO SARS-CoV-2 INFECTION IN PATIENTS WITH RHEUMATIC MUSCULOSKELETAL DISEASES: THE MAINSTREAM STUDY

E.G. Favalli2,3, A. Favalli4, G. Andreà1, G. Majoli1,5, E. Zagato1, M. Bombaci1, E. Pesce1, L. Donnici1, P. Gruarini1, M. Biggiglieri2, S. Curti1, L. Manganaro1, E. Moshios1, V. Bevilacqua2, M. Fattoruscio3,4, V. Lomazzi3,4, M. Crosti1, L. Marongiu3,5, F. Granucci1, S. Notabartolo1, A. Bandera1,6,7,8, A. Gori1,8, R. De Francesco1, S. Abrignani1, R. Caporali1,7, R. Griftini1 on behalf of MAINSTREAM Project. ASSIST Pino CT Institute, Division of Clinical Rheumatology, Milano, Italy; University of Milan, Department of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Milano, Italy; INGV * Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy; DiA Pro, Diagnostic Biopros Brls srl, Milano, Italy; Università degli Studi di Milano Bicocca, Department of Biotechnology and Biosciences, Milano, Italy; Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Infectious Diseases Unit,