Shereen Oon: None declared, Sean O’Neill Consultant of: GSK, Fiona Goldblatt: None declared, Kathryn Gibson Speakers bureau: UCB, Consultant of: Novartis, Janssen Pharmaceuticals, Grant/research support from: Novartis, Employee of: Eli Lilly and Company. Ng Ng speaks on behalf of Abbvie. Novartis, Janssen. Anne Law: None declared, Nicola Tugnet: None declared, Sunil Kumar: None declared, Cherrica Tee: None declared, Yoshiya Tanaka Speakers bureau: Y. Tanaka has received speaking fees and/or honoraria from Daiichi-Sankyo, Eli Lilly, Novartis, YL Biologics, Bristol-Myers, Eisai, Abbvie, Astellas, Pfizer, Sanofi, Asahi-kasei, GSK, Mitsubishi-Tanabe, Gilead, Janssen, Grant/research support from: Abbvie, Eisai, Abbvie research grants from Abbvie, Eisai, Mitsubishi-Tanabe, Chugai, Asahi-Kasei, Eisai, Takeda, Daiichi-Sankyo, C.S. Lau Shareholder of: Pfizer, Sanofi, and Janssen, Mandana Nikpour Speakers bureau: Actelion, GSK, Janssen, Pfizer, UCB, Paid instructor for: UCB, Consultant of: Actelion, Boehringer Ingelheim, Certa Therapeutics, Eli Lilly, GSK, Janssen, Pfizer, UCB, Grant/ research support from: Actelion, Astra Zeneca, BMS, GSK, Janssen, UCB, Eric F. Morris Speakers bureau: AstraZeneca, Paid instructor for: Eli Lilly, Consultant of: AstraZeneca, Amgen, Biogen, BristolMyersSquibb, Eli Lilly, EMD Serono, Genen- tech, Janssen, Grant/research support from: AstraZeneca, BristolMyersSquibb, Eli Lilly, EMD Serono, Janssen, Alberto Hoi Consultant of: AHI is on the advisory board for Abbvie and GSK, Grant/research support from: AH has received research support from: AstraZeneca, GSK, BMS, Janssen, and Merck Serono.

DOI: 10.1136/annrheumdis-2022-eular.4172

POS0122
CENTRAL NERVOUS SYSTEM DEMYELINATING SYNDROMES IN SYSTEMIC LUPUS ERYTHEMATOSUS: RESULTS FROM “ATTIKON” LUPUS COHORT

D. Nikolopoulou1, D. Kitsos2, M. Papathanasiou3, N. Kapsala1, A. Grivas1, O. Gioti4, P. Garantzis3, A. Pieta1, K. Voumvourakis4, D. Boumpas1, A. Fanourakis1,2, National and Kapodistrian University of Athens, Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine, Aittkon University Hospital, Athens, Greece; 3National and Kapodistrian University of Athens, 2nd Department of Neurology, Aittkon University Hospital, Athens, Greece; 1National and Kapodistrian University of Athens, 2nd Department of Radiology, Aittkon University Hospital, Athens, Greece; 2Asklepieion General Hospital, Department of Rheumatology, Asklepieion General Hospital, Athens, Greece, 1Hannover Medical University, Division of Immunology and Rheumatology, Hannover, Germany; 4University of Ioannina, Rheumatology Clinic, University Hospital of Ioannina, Ioannina, Greece.

Background: Central nervous system (CNS) demyelinating syndromes that occur in the context of SLE may represent a manifestation of neuropsychiatric lupus, or an overlap of SLE and multiple sclerosis (MS). The differential diagnosis between the two entities has important clinical implications, because the therapeutic management differs between the two conditions.

Objectives: To characterize CNS demyelinating syndromes in a large SLE cohort as neuropsychiatric SLE or SLE-MS overlap, using a multidisciplinary approach and existing diagnostic (MS) and classification criteria (SLE). Methods: Patients from the ‘’Attikon’’ lupus cohort (n=707) were evaluated for demyelinating syndromes. Clinical, laboratory and neuroimaging data were recorded for each patient. Following multidisciplinary evaluation and classification of criteria, the demyelinating syndrome was attributed to either SLE or MS. Patients with transverse myelitis were not included in this study.

Results: We identified 26 patients with demyelinating syndromes (3.7%) with median age at diagnosis 46.9 (SD 12.3) years and median disease duration at last follow-up 60 (IQR 52) months. Of them, 12 were diagnosed as primary SLE-demyelination (46.2%) and 14 as overlap SLE-MS (53.8%). The two groups did not differ with respect to rheumatologic and neurologic manifestations, or serologic findings (ANA, dsDNA, C3/C4, aPL, ENA). SLE patients with demyelination manifestation had mainly extracNS disease mainly involving joints and skin, while severe non-CNS manifestations were rare. However, patients with SLE-demyelination were less likely to have elevated IgG index (OR 0.055 95% CI: 0.008-0.40) and positive oligohepatic bands (OR 0.09 95% CI: 0.014-0.56). SLE patients with primary demyelinating syndrome were less likely to exhibit brain lesions in the spinal cord, infratentorial, periventricular and juxtaocular regions. A single brain region was affected in 9 SLE-demyelination patients (75%), while all MS-SLE patients had multiple affected brain regions. MS-SLE overlap was associated with increased likelihood of neurologic relapses (OR 18.2, 95% CI: 1.76-188), while SLE-demyelination patients were less likely to exhibit neurological deficits (EDSS=0) at last follow-up visit (50% vs. 78.6%in SLE-MS, respectively).

Conclusion: Demyelination in the context of SLE follows a more benign course compared to a frank SLE-MS overlap. Prolongation of follow-up will ascertain whether the SLE-demyelination patients evolve to MS, or this is a bona fide NPSLE syndrome.

Disclosure of Interests: None declared


POS0123
MAJOR SALIVARY GLAND ULTRASONOGRAPHY AND MRI WITH DIFFUSION WEIGHTED IMAGING (DWI) AS COMPLEMENTARY TOOLS TO IDENTIFY FEATURES OF MALT IN PRIMARY SJÖGREN’S SYNDROME (PSS): A SINGLE CENTER CROSS SECTIONAL STUDY

G. Govemato1, G. Fulvio1, C. Fanni2, F. Ferro1, C. Roncella3, V. Donati3, A. Santoro4, S. Fonzi1, G. La Rocca1, M. Mosca1, G. Aringhieri1, C. Baldini1, 1Rheumatology Unit, Azienda Ospedaliero-Universitaria Pisana, Clinical and Experimental Medicine, Pisa, Italy; 2Diagnosis and Interventional Radiology, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and of New Technologies in Medicine and Surgery, Pisa, Italy; 3Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, AOUP, Pisa, Italy; 4Unit of Otoaryngology, Azienda Ospedaliero-Universitaria Pisana, AOUP, Pisa, Italy

Background: Salivary MALT lymphoma represents the major complication of primary Sjögren’s Syndrome (pSS). However, the early recognition of MALT lymphoma may be challenging due to its indolent, slow clinical course.

Objectives: 1) to identify salivary gland ultrasonographic (SGUS) features and magnetic resonance (MRI) abnormal findings with Diffusion Weighted Imaging (DWI) and Apparent Diffusion Coefficient (ADC) of MALT in pSS patients. 2) To evaluate the correlation between salivary gland ultrasonography (SGUS) and MRI in pSS patients with suspected lymphoma.

Methods: consecutive patients with pSS (2016 ACR/EULAR criteria) and suspected MALT lymphoma undergoing histological examination were included in this cross sectional study from September 2017 to November 2021. The US echostucture of each gland on B-mode images was graded using the latest 2019 OMERACT semiquantitative SGUS scoring systems (0-3). Sonographic features of focal lesions were described. Conventional MRI techniques (ie T1WI, T2WI, and STIR images) combined with MR sialography was performed in all the cases. DWI was acquired at b-value 0, 500 and 1000. ADC values were calculated. Patients’ clinical and histological data were collected. Data were presented as means±SD, or percent frequency as appropriate. Intergroup comparisons were made using the t-test/Mann–Whitney test for continuous variables and Fisher’s exact test for categorical variable.

Results: 45 pSS (mean age, S.D=55±15 yrs) were included. MALT lymphoma was histologically confirmed in 14/45 pSS patients and, specifically in 18/180 major salivary glands (17 parotids and 1 submandibular gland). At SGUS examination, MALT salivary glands presented an OMERACT grade 3 in 18/18 and a grade 2 in 2/18, significantly higher than the OMERACT scoring observed in no-MALT pSS glands (p=0.001). The sonographic features more commonly detected in MALT were: hypoechoic macroareas with posterior enhancement, presence of septa or hyperechogenic strands and anachral intralesional vascularization. At MRI, 15/18 (83.3%) MALT lymphoma appeared as intraglandular solid lesions: 9/15 (60%) were solid-cystic lesions and 6/15 (40%) were solid lesions without cystic changes. The frequency of solid lesions in pSS patients without lymphoma was 3/124 (2.4%), significantly lower than in MALT-pSS. Furthermore, 15/18 (83.3%) MALT lymphoma showed glandular fatty substitution. The presence of fatty substitution did not differ in MALT lymphomas and in no-MALT pSS glands. The mean (SD) ADC value of MALT lesions was significantly lower than the ADC of the parotid glands in pSS lymphoma (0.63±0.07 x 10^-3 mm^2/s vs 1.13± 0.19 x 10^-3 mm^2/s, p =0.001). A negative correlation between SGUS OMERACT score and mean glandular ADC values (r = −0.776, p < 0.001) was found; patients with OMERACT score 3 presented the lowest mean salivary gland ADC when compared to the other OMERACT scores (0-2) (p=0.001).

Conclusion: OMERACT semiquantitative SGUS scoring systems and MRI with DWI represent promising complementary tools in the differential diagnosis of pSS MALT lymphoma, particularly useful to guide parotid biopsy. Patients with an OMERACT score 3 in their SGUS deserve a careful screening for lymphoma.

Disclosure of Interests: None declared


Through the looking glass...