a replicable pre-test GCA probability score 1 to select patients is likely to be as important to diagnosis as the diagnostic tool characteristics themselves.

REFERENCES:

Disclosure of Interests: None declared

AB0603
INCREASED INCIDENCE OF RAYNAUD’S PHENOMENON IN GIANT CELL ARTERITIS, POSSIBLY ASSOCIATED WITH LARGE VESSEL GIANT CELL ARTERITIS.

B. Slikhuis1, M. Sandovici2, A. Eman Abudlle3, K. van der Geest4, E. Brouwer5, D. J. Mulder1
1University Medical Center Groningen, Internal Medicine, Groningen, Netherlands; 2University Medical Center Groningen, Rheumatology, Groningen, Netherlands

Background: Large Vessel Giant Cell Arteritis (LV GCA) can cause significant narrowing of the subclavian and axillary arteries, either by inflammation or remodeling, which reduces blood pressure in the arms. Also, Raynaud’s phenomenon (RP) has been observed in GCA patients.

Objectives: This study aims to investigate the presence of Raynaud’s phenomenon in patients with GCA.

Methods: Patients diagnosed with GCA were given a validated questionnaire (CSQ) 1 on symptoms fitting RP, divided into the different phases of RP (white, blue/purple, and red discoloration provoked by cold exposure) as not every patient exhibits all phases. In total, 30 GCA patients were enrolled in this study. Furthermore, imaging data (PET-CT, MRI, ultrasound (US), or temporal artery biopsy (TAB)) of all GCA patients were evaluated.

Results: 30 GCA patients were included, with a mean age of 68.6 (±6.5) years, when diagnosed. 76.7% were female. Of the 30 GCA patients, 12 (40%) reported monophasic discoloration. Of these 12 GCA patients, 2 (6.7%) patients reported bi- or triphasic discoloration. Of the 12 GCA patients with at least monophasic discoloration, 6 patients reported a new onset RP (<1 year of diagnosis). Imaging data of these 6 patients showed severe Large Vessel GCA (with subclavian and axillary involvement) in all of these patients, without displaying cranial GCA. Of these 6 patients, 1 was examined with US, 3 with PET, and 2 had both US and a PET-CT. 3 patients reported that the RP complaints, disappeared during treatment of the GCA, 3 still had complaints. Interestingly all these 3 patients had stenosis of either the subclavian, the axillary, or both.

Conclusion: We found an increased prevalence of monophasic Raynaud’s phenomenon in GCA patients that is 3.7 times higher, when compared to a local background population2. When looking at new onset RP in GCA, all patients were bi- or triphasic discoloration. Of the 12 GCA patients with at least monophasic discolouration, 76.7% were female. Of the 30 GCA patients, 12 (40%) reported RP when diagnosed. 76.7% were female. Of the 30 GCA patients, 12 (40%) reported monophasic discoloration. Of these 12 GCA patients, 2 (6.7%) patients reported bi- or triphasic discoloration. Of the 12 GCA patients with at least monophasic discoloration, 6 patients reported a new onset RP (< 1 year of diagnosis). Imaging data of these 6 patients showed severe Large Vessel GCA (with subclavian and axillary involvement) in all of these patients, without displaying cranial GCA. Of these 6 patients, 1 was examined with US, 3 with PET, and 2 had both US and a PET-CT. 3 patients reported that the RP complaints, disappeared during treatment of the GCA, 3 still had complaints. Interestingly all these 3 patients had stenosis of either the subclavian, the axillary, or both.

Disclosure of Interests: Berend Slikhuis: None declared, Maria Sandovici: None declared, Amael Eman Abudlle: None declared, Kornelis van der Geest: Speakers bureau: as an employee of the UMC, received speaker fees from Roche which were paid to the UMCG, Elisabeth Brouwer: Speakers bureau: as an employee of the UMC received speaker fees from Roche in 2017, 2018 which were paid to the UMCG, Douwe J Mulder:Grant/research support from: as an employee of the UMC received research grants from Sanofi which were paid to the UMCG.

DOI: 10.1136/annrheumdis-2022-eular.4388

AB0604
INFLUENCE OF THE LOCATION AND SEVERITY OF VASCULAR INVOLVEMENT ON THE BASAL PHENOTYPIC EXPRESSION AND ON THE EVOLUTION OF GIANT CELL ARTERITIS

A. Ginon1, M. D. C. Uyaguari Morocho2, E. Fernández-Fernández2, I. Monjo3, E. de Miguel2
1University Autonoma Madrid. Medicine Faculty, Rheumatology, Madrid, Spain; 2Hospital Universitario La Paz, Rheumatology, Madrid, Spain

Background: Giant cell arteritis (GCA) is the most common systemic vasculitis in adults. There is increasing evidence about clinical subtypes of the disease depending on the cranial or extracranial vessels involvement. However, how this type of affection influences the phenotypic expression of the disease and whether there are differences between them in terms of the thickness of the vessels wall, are still aspects that remain to be clarified.

Objectives: To evaluate the association between the subtypes of GCA and the basal phenotypic expression and severity of the artery walls affection in the disease.

Methods: This is a retrospective study of new consecutive patients diagnosed with GCA in our hospital from July 2018 to December 2020. The patients underwent Color-Doppler ultrasonography at the time of diagnosis of cranial arteries (superficial temporal arteries in the common superficial temporal artery and their parietal and branchial arteries) and extra-cranial arteries (axillary, subclavian, and carotid arteries). The ultrasound diagnosis was made according to the OMERACT definitions of the halo sign and cut-off the intima media thickness was established as ≥0.34 mm for the branches of the temporal arteries, ≥0.42 in the common superficial temporal artery, ≥0.55 for the axillary, subclavian, and carotid arteries. The halo score (HScore) was calculated according to the criteria published by Van der Geest KSM et al. In addition, the clinical records of the patients were reviewed and their demographic, clinical and laboratory data were compared between the different subtypes of GCA. A p < 0.05 limit of statistical significance was established. The statistical analysis was performed using SPSS version 25.

Results: A total of 74 patients were included, of which 44 (58.7%) were women with a mean age of 78.6 ± 8.6 years. Analyzing the GCA subtypes: 18 (24.3%) had exclusively cranial involvement (CGCA), 12 (16.2%) patients had GCA of extra-cranial large vessels (LVGCA) and 44 (59.5%) patients had mixed forms cranial and extra-cranial (MGCA). The characteristics of the population and of each of the GCA subtypes, as well as thickening of the wall of the arteries are described in Table 1.

Table 1. Characteristics of the study population.

| Characteristic | All GCA (n=74) | LVGCA (n=44) | LGCA (n=18) | MGCA (n=12) | p-value
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Female, n (%)</td>
<td>50 (67.5%)</td>
<td>26 (59.1%)</td>
<td>10 (55.6%)</td>
<td>14 (60%)</td>
<td>0.21</td>
</tr>
<tr>
<td>Age (years)</td>
<td>78.6 ± 80.6</td>
<td>78.3 ± 80.6</td>
<td>79.5 ± 8.6</td>
<td>78.2 ± 8.6</td>
<td>1.33</td>
</tr>
<tr>
<td>LV GCA</td>
<td>56.4 ± 31.3</td>
<td>31.3 ± 03.3</td>
<td>20.5 ± 6.2</td>
<td>75.0 ± 8.6</td>
<td>0.01</td>
</tr>
<tr>
<td>RVGCA</td>
<td>47.4 ± 31.3</td>
<td>31.3 ± 03.3</td>
<td>20.5 ± 6.2</td>
<td>25.0 ± 8.6</td>
<td>0.01</td>
</tr>
<tr>
<td>Bi- or triphasic discoloration, n (%)</td>
<td>37 (50.0%)</td>
<td>19 (43.2%)</td>
<td>9 (50.0%)</td>
<td>9 (75.0%)</td>
<td>0.11</td>
</tr>
<tr>
<td>Monophasic RP, n (%)</td>
<td>37 (50.0%)</td>
<td>19 (43.2%)</td>
<td>9 (50.0%)</td>
<td>9 (75.0%)</td>
<td>0.11</td>
</tr>
<tr>
<td>Was the color white? n (%)</td>
<td>37 (50.0%)</td>
<td>19 (43.2%)</td>
<td>9 (50.0%)</td>
<td>9 (75.0%)</td>
<td>0.11</td>
</tr>
<tr>
<td>Was the color blue/purple? n (%)</td>
<td>37 (50.0%)</td>
<td>19 (43.2%)</td>
<td>9 (50.0%)</td>
<td>9 (75.0%)</td>
<td>0.11</td>
</tr>
<tr>
<td>Was the color red? n (%)</td>
<td>37 (50.0%)</td>
<td>19 (43.2%)</td>
<td>9 (50.0%)</td>
<td>9 (75.0%)</td>
<td>0.11</td>
</tr>
<tr>
<td>LV GCA</td>
<td>6 (100%)</td>
<td>6 (100%)</td>
<td>6 (100%)</td>
<td>6 (100%)</td>
<td>1.00</td>
</tr>
<tr>
<td>LVGCA</td>
<td>37 (50.0%)</td>
<td>19 (43.2%)</td>
<td>9 (50.0%)</td>
<td>9 (75.0%)</td>
<td>0.11</td>
</tr>
<tr>
<td>RVGCA</td>
<td>37 (50.0%)</td>
<td>19 (43.2%)</td>
<td>9 (50.0%)</td>
<td>9 (75.0%)</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Conclusion: The constitutional syndrome was always present in LVGCA but it is also very common in subtypes with cranial involvement. The ischemic syndrome occurs preferentially in groups with cranial vessel involvement, but not exclusively. The thickening of the arterial wall of the cranial arteries shows no difference between CGCA and MGCA; and the same occurs in the large vessels between the LVGCA and the MGCA. Serious adverse effects due to ischemia were not observed in any of the subtypes of GCA. The thickness of the wall of the arteries is different between the cranial and extracranial subtypes.

Disclosure of Interests: None declared

ANOTHER REFERENCE:

Disclosure of Interests: None declared