Methods: We retrospectively evaluated consecutive patients admitted to our department from January 2006 to October 2021 whose C7-HRP antigen were measured. We collected their age, sex, primary problem and its lesion, and test results before C7-HRP measurement. We also investigated the use of immunosuppressants, and maximum and cumulative dose of administered prednisolone within 6 months before C7-HRP measurement. Maximum and cumulative dose of prednisolone contained methylprednisolone pulse, which was converted to prednisolone equivalent. We investigated the characteristics of CMV-positive and negative patients, and those of CMV-positive patients with or without anti-CMV drug use.

Results: Of a total of 472 patients, 85 were positive and 387 were negative for C7-HRP. The average age was 71.2 vs. 64.4 (p=0.0021). Their male-to-female ratio was 20/65 vs. 120/267 (p=0.0290). The following diseases were significantly common among CMV-positive patients: microscopic polyangiitis (21.2% vs. 3.9%, p<0.0001), adult-onset Still's disease (7.1% vs. 1.3%, p=0.0002), and systemic sclerosis (4.7% vs. 2.1%, p=0.0273). Significantly common comorbidities of CMV-positive patients were interstitial lung disease (35.3% vs. 16.0%, p=0.0001), nephritis (23.5% vs. 11.6%, p=0.0005), peripheral nervous system disorders (11.8% vs. 5.7%, p=0.0070), alveolar hemorrhage (5.9% vs. 0.8%, p=0.0001), and peripheral circulatory disorders (4.7% vs. 1.6%, p=0.0111). Average neutrophil counts (7720 /μL vs. 6440 /μL, p=0.0001), serum creatinine (1.0mg/dL vs. 0.9mg/dL, p=0.0194), and hemoglobin A1c (6.3% vs. 5.7%, p=0.0030) were significantly higher among CMV-positive patients, whereas hemoglobin (10.1 g/dL vs. 11.1 g/dL, p=0.0001), lymphocyte counts (820 /μL vs. 1190 /μL, p=0.0001), platelet counts (233000 /μL vs. 259000 /μL, p=0.0001), and serum albumin (2.9 g/dL vs. 3.4 g/dL, p=0.0001) were lower. Higher maximum dose of prednisolone (534.9mg/day vs. 135.5mg/day, p=0.0001), intravenous cyclophosphamide (271.1% vs. 11.4%, p=0.0001), rituximab (9.4% vs. 2.1%, p=0.0001), azathioprine (23.5% vs. 14.2%, p=0.0053), cyclosporin (8.2% vs. 3.6%, p=0.0101) were significantly more often used among CMV-positive patients. Average cumulative dose of prednisolone was 3022.6mg vs. 1408.7mg (p<0.0001). We also performed multivariate analysis, including the patients’ age, sex, maximum and cumulative dose of prednisolone, and the use of intravenous cyclophosphamide, rituximab, azathioprine, and cyclosporin. Elderly (p=0.0006), female (p=0.0285), high cumulative dose of prednisolone (p=0.0155), and the use of cyclosporin (p=0.0479) were significantly associated with CMV-positivity. Anti-CMV drug was administered to 63.5% of CMV-positive patients. The average age was significantly higher in anti-CMV-drug-treated patients than untreated patients (73.7 vs. 67.1, p=0.0492). The CMV-treated patients had significantly higher neutrophil counts (8540 /μL vs. 6280 /μL, p<0.0001), erythrocyte sedimentation rate (57.6 vs. 40.5, p<0.0001), and C-reactive protein (5.3mg/dL vs. 2.6mg/dL, p=0.0001) than the untreated patients while the other data such as complete blood counts and serum chemistry revealed no significant difference. Average maximum dose of prednisolone was significantly higher in CMV-treated patients (617.1 vs. 67.1mg/day, p=0.049), lower platelet counts (20.9 vs. 25.8 x10^4/μL, p=0.045), lower albumin levels (3.2 vs. 3.4g/dL, p=0.007), higher AST levels (26 vs 23UL, p=0.04), higher creatinine levels (0.71 vs 0.67mg/dl, p=0.047), and higher ferritin levels (167 vs 154mg/ml, p=0.047) in the AE group compared with the non-AEs group, respectively. Multivariable analysis identified an older age (OR 1.03, p=0.002), and AOSD (OR 9.72, p=0.001) as independent risk factors for AEs leading to SMX/TMP withdrawal (Table 1).

Conclusion: Old age and AOSD were associated with AEs of SMX/TMP prophylaxis in patients with systemic rheumatic diseases.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2022-eular.2215

POS1425

A. Singh1, S. K. Das2, A. Chopra3, D. Danda3, B. J. Paul4, L. March5, A. J. Mathew6, P. Shenyoy6, C. Gotay7, A. J. Palmer1, B. Anton3

1University of Tasmania, Hobart, Tasmania, Australia, Menzies Institute for Medical Research, Hobart, Australia; 2Era’s University, Lucknow, India, Department of Rheumatology, Lucknow, India; 3Apollo Jehangir Hospital, Pune University, Pune, India, Centre for Rheumatic Diseases, Pune, India; 4Christian Medical College, Vellore, India, Department of Clinical Immunology and Rheumatology, Vellore, India; 5KMC Medical College, Calicut, Kerala, India, Department of General Medicine, Calicut, India; 6University of Sydney, Sydney, Australia, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Sydney, Australia; 7University of Sydney Royal North Shore Hospital, St Leonards, Sydney, Australia, Flare and Copse Professional Rheumatology Department, Sydney, Australia; 8Center for Rheumatology and Spine Diseases, Copenhagen University Hospital - Rigshospitalet Glostrup, Denmark, The Copenhagen Center for Arthritis Research (COPECARE), Glostrup, Denmark; 9Center for Arthritis & Rheumatism Excellence, Kochi, Kerala, India, Department of Rheumatology, Kochi, India; 10University of British Columbia, Vancouver, BC Canada, School of Population and Public Health (SPPH), Vancouver, Canada

Background: Few studies have reported the burden of osteoarthritis (OA) in different parts of India. However, no study has reported the detailed estimates of incidence, prevalence, and years lived with disability (YLDs) and its trends for OA (and its various sites) across the states of India over a long period of time.