Six patients developed side effects that required discontinuation of TOC therapy (4 patients had allergic reactions, 1 patient developed tuberculosis, 1 patient had severe neutropenia). 47/82 patients were switched on other biologic drug: on canakinumab (31), on TNF-inhibitors (11), on rituximab (5). In summary, TOC was canceled in 49/192 (25%) patients due to ineffectiveness or AEs in our cohort.

Conclusion: These results demonstrated that TOC is highly effective as the first biologic drug in patients with sJIA. Our observations have shown a good tolerability and survival of the IL-6 inhibitor TOC in patients with sJIA treated in a real-world clinical setting.

Disclosure of Interests: None declared.

DOI: 10.1136/annrheumdis-2021-eular.2525

POSt1314

PSYCHIATRIC DISORDERS IN JUVENILE IDIOPATHIC ARTHRITIS - A POPULATION-BASED COHORT STUDY

B Delocq1, A Horne2,3, S Omansdottr1,4, J Reuvers5, J Askling2,6

1Karolinska Institutet, Medicine, Division of Clinical Epidemiology, Stockholm, Sweden; 2Karolinska Institutet, Department of Women’s and Children’s Health, Stockholm, Sweden; 3Karolinska University Hospital, Pediatric Rheumatology Unit, Theme of Children’s Health, Stockholm, Sweden; 4Pediatric Rheumatology Registry, Pediatric Rheumatology Registry, Stockholm, Sweden

Background: Juvenile idiopathic arthritis (JIA) may have substantial consequences for quality of life, for instance due to chronic pain, restrictions of activity, concern about physical appearance, and treatment protocols that may limit interactions with peers. However, it remains unclear whether children and adolescents with JIA show a higher incidence of psychiatric disorders compared with the general population.

Objectives: To examine the incidence of psychiatric disorders during childhood in JIA patients in Sweden relative to general population controls.

Methods: We performed a register- and population-based cohort study including new-onset JIA patients aged 0 to 17 years 1st January 2012 through 31st December 2017. Incident JIA patients were followed-up from the date of their 2nd JIA diagnosis. At this date, five sex-age-region matched individuals were sampled from the general population. Nine psychiatric disorders were defined with ICD-10 codes and associated drugs (ATC codes): psychotic disorders (ICD-10: F20-29; ATC: N05A), mood and anxiety disorders (F30-F43; N05B, N06A, R06A01, R06A02, N03AX16), sleeping disorders (F51, N05C, N03A01), eating and personality disorders (F60, F60-61, F69), neuropsychiatric disorders (F70-F79, F84, F90, N06A, C02AC02), substance misuse (F10-F19; N07B), suicide attempts (X60-X84, Y10-34) and death by suicide or substance abuse, and all these combined.

The follow-up stopped at the date of first outcome, migration, death, 18th birthday or end of the study period, whichever occurred first. Incidence rates were calculated and compared by Cox regression analyses, adjusted for age, sex, calendar year, patient’s and family’s history of psychiatric disorder, country of birth, parents’ education level, and comorbidities (IBD, obesity and celiac disease). In sensitivity analyses, we (1) excluded children with a history of a psychiatric diagnosis at start of follow-up, and (2) defined the psychiatric disorders based on ICD-10 codes only.

Results: We identified 2224 JIA patients (64% girls, mean age: 9.8 years) and 10,264 matched controls. In the JIA cohort, 309 patients developed a psychiatric disorder (all outcomes combined) during 4996 person-years (pYS), which corresponded to a crude incidence rate (IR) of 6.2 per 100 pYS (95% confidence interval CI: 5.9-6.5). The corresponding crude IR for the general population matched controls was 3.6 (3.4-3.9). Comparing these incidence rates resulted in a sex-aged adjusted hazard ratio (HR) of 1.7 (CI: 1.4-2.1) and a fully adjusted HR of 1.8 (CI: 1.3-2.4). Considering specific outcomes, the IRs per 100 pYS in the JIA population ranged from 0.1 (suicide attempt) to 3.7 (mood and anxiety disorders) (Table 1). No death from suicide was recorded. There was an overlap across the seven outcomes; among all individuals diagnosed with at least one of the psychiatric outcomes during follow-up, 58% were diagnosed with one outcome only, 25% with 2% with 3 or more outcome conditions. The Cox analyses of the 7 outcome groups demonstrated four statistically significant increased risks for psychotic, mood and anxiety, sleeping and neuropsychiatric disorders (Figure 1). The three latter outcomes were correlated to each other (with Cramer’s V coefficient between 0.3 and 0.5). The severity analyses showed no significant differences. In summary, our results show a higher incidence of psychiatric disorders in JIA patients compared to the general population.

Conclusion: The burden of psychiatric illness in individuals with JIA is increased compared to the general population.

Table 1. Risk of psychiatric disorders in JIA patients and general population controls.

<table>
<thead>
<tr>
<th>Disorders</th>
<th>N events JIA</th>
<th>N events controls</th>
<th>IR JIA (95% CI)</th>
<th>IR controls (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All combined</td>
<td>309</td>
<td>918</td>
<td>6.2 (5.5-6.9)</td>
<td>3.6 (3.4-3.9)</td>
</tr>
<tr>
<td>Psychotic</td>
<td>25</td>
<td>44</td>
<td>0.5 (0.3-0.7)</td>
<td>0.2 (0.1-0.2)</td>
</tr>
<tr>
<td>Mood</td>
<td>194</td>
<td>534</td>
<td>3.7 (3.2-4.3)</td>
<td>2.0 (1.9-2.2)</td>
</tr>
<tr>
<td>Sleeping</td>
<td>148</td>
<td>348</td>
<td>2.8 (2.4-3.3)</td>
<td>1.3 (1.2-1.5)</td>
</tr>
<tr>
<td>Neuropsychiatric</td>
<td>126</td>
<td>322</td>
<td>2.4 (2.0-2.8)</td>
<td>1.7 (1.5-1.9)</td>
</tr>
<tr>
<td>Eating</td>
<td>13</td>
<td>55</td>
<td>0.2 (0.1-0.4)</td>
<td>0.2 (0.2-0.3)</td>
</tr>
<tr>
<td>Substance misuse</td>
<td>14</td>
<td>49</td>
<td>0.3 (0.2-0.4)</td>
<td>0.2 (0.2-0.3)</td>
</tr>
<tr>
<td>Suicide attempt</td>
<td>7</td>
<td>55</td>
<td>0.1 (0.1-0.3)</td>
<td>0.2 (0.2-0.3)</td>
</tr>
</tbody>
</table>

IR: crude incidence rate per 100 person-years; CI: confidence interval; adjustment: see text.
Conclusion: This study suggests that JIA patients treated with DMARDs continued their treatment during the pandemic. In contrast, parents' reluctance was a major obstacle for returning to school. Therefore, more solidified school reopening strategies should be developed.

REFERENCES:

Acknowledgements: We would like to thank all the participants involved in this clinical research and six medical students who helped completing the forms: Margaux Blondel, Alice Bonnard, Marie Desval, Béatrice Dordain, Gabrielle Fag-net, and Madouc De Saint Martin Pernot.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.2838

USEFULNESS OF SYNOVIAL BIOPSY IN THE DIFFERENTIAL DIAGNOSIS AND AS POSSIBLE PREDICTOR OF RESPONSE TO TREATMENT IN JUVENILE IDIOPATHIC ARTHRITIS

S. Costi¹, F. Pregnolato², A. Parafioriti³, T. Giani⁴, R. Cimaz⁵,⁶,⁷.
¹University of Milan, Rheumatology, Milan, Italy; ²Auxologico Italiano, Experimental Laboratory of Immunological and Rheumatologic Researches, Milan, Italy; ³ASSST G.Pini-CTO, Pathological Anatomy, Milan, Italy; ⁴Meyer Children's Hospital, Pediatric Rheumatology, Florence, Italy; ⁵University of Siena, Department of Medical Biotechnology, Siena, Italy; ⁶University of Milan, Department of Clinical Sciences and Community Health, and Research Center for Adult and Pediatric Rheumatic Diseases, Milan, Italy; ⁷ASSST Gaetano Pini-CTO, Pediatric Rheumatology, Milan, Italy

Background: While synovial biopsy is an invasive procedure and is not required for the diagnosis of juvenile idiopathic arthritis (JIA), it may be useful in doubtful cases. Objectives: Aims of the study were to verify the role of synovial biopsy in the differential diagnosis of JIA and to review the pathology slides in order to evaluate possible associations of a histologic pattern with response to treatment. Methods: We reviewed data from medical records of patients under the age of 18 years who underwent a synovial biopsy requested by our Pediatric Rheumatology Unit over the last 10 years. We collected information on demographic, clinical, laboratory, radiological, histopathological characteristics, as well as treatment response (in particular, remission at the last visit and number of examination, number of biologic drugs used). Among variables in the histologic score, number of layers in the synovial lining and inflammatory infiltrate (0-5) were compared to clinical status at last visit. Potential differences in variables between responders and non-responders were assessed by unpaired t-test or non-parametric Mann-Whitney test, as appropriate.

Results: We identified 64 patients (40F, 24M) with a median age at disease onset of 9 years (range 1-15) and a median follow-up time of 161 months (range 8-1160). We recognized two groups of interest: patients with a known JIA diagnosis (28/64) and patients with unknown diagnosis (36/64) at the moment of synovial biopsy. In the group with known JIA, most underwent the procedure during orthopedic surgery, and in all cases the histology was consistent with JIA. Among the unknown diagnosis group, in 19 cases results were consistent with a chronic synovitis, while among the other 17 histology could lead to a diagnosis of other conditions in 6 cases (foreign body and villonodular synovitis n=2 each, sarcoidosis and osteochondromatosis n=1 each). In the remaining 11 the final diagnoses were varied (mostly genetic forms eg skeletal dysplasia, CACP, Thiemann disease).

Between the two groups we identified 46 patients with a definite JIA diagnosis. At the last follow-up visit 29 of them were in clinical remission, albeit on medication. The remaining 17 had a severe course of disease, with persistent activity and use of at least two biologic drugs. In 26 cases we could evaluate the correlation between status at last visit and number of layers/inflammatory infiltrate, but no statistical significant correlation was found.

Conclusion: Despite its limited use nowadays, synovial biopsy may still be a useful tool in patients whose diagnosis is unclear. In our study, while it confirmed the suspicion in most cases, in other instances it allowed the diagnosis of rare conditions that would have been otherwise missed. No association between disease course and histological features in a small JIA cohort was found. We are currently expanding the study with a larger series.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.20989

VISUAL FUNCTION AND QUALITY OF LIFE: PRELIMINARY RESULTS FROM A PIVOTAL CROSS-SECTIONAL STUDY ON ONE HUNDRED PATIENTS WITH JUVENILE IDIOPATHIC ARTHRITIS-ASSOCIATED AND IDIOPATHIC UVEITIS

G. B. Beretta¹, F. Minosa², L. Marelli³, C. Mapelli³, G. Leone³, T. Giani⁴, P. Nucco⁵, E. Misereocchi⁶, R. Cimaz⁷ on behalf of Pediatric Rheumatology Associated Group of the Milan Area.
¹Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Rheumatology, Milan, Italy; ²Ospedale San Giuseppe, IRCCS Multimedica, Ophthalmology, Milan, Italy; ³Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Ophthalmology, Milan, Italy; ⁴Università degli Studi di Siena, Pediatric Rheumatology, Siena, Italy; ⁵Università degli Studi di Milano, Ophthalmology, Milan, Italy; ⁶ASST Gaetano Pini-CTO, Pediatric Rheumatology, Milan, Italy; ⁷Università degli Studi di Milano, Pediatric Rheumatology, Milan, Italy

Background: Juvenile idiopathic arthritis (JIA) is the main cause of chronic uveitis in childhood and JIA associated uveitis (JIA-U) is the most common extraarticular complication of JIA. Despite continuous improvement in its management, pediatric uveitis still represents a serious condition with potential sight-threatening complications and a significant impact on quality of life (QoL). Objectives: To evaluate visual function (VF) and QoL in children with JIA-U and idiopathic uveitis Methods: A cross-sectional study was conducted in two tertiary Pediatric Rheumatology Centres, enrolling all patients seen with JIA-U, JIA without uveitis and idiopathic uveitis. VF was assessed by a translated form of the available EYE-Q, adapted for cross-cultural feasibility into a 10-question tool, while QoL was evaluated by the Italian version of the Pediatric Rheumatology Quality of Life scale part of the Juvenile Arthritis Multidimensional Report (JAMAR), shortened for feasibility to a 4-question tool. JAMAR section on treatment compliance and school attendance was also included. Parents, and patients when appropriate, were asked to complete each patient/parent-reporting outcome measure, answering on a 4-point Likert scale, with a total score ranging from 0 to 72 (worst condition). Medical charts were reviewed regarding JIA and uveitis features and outcome. Quantitative and qualitative variables were compared by means of Mann-Whitney U test or chi-square/Fisher exact test, as appropriate; correlations among quantitative non-parametric variables were evaluated by Spearman's test.

Results: We herein describe results from the first 100 patients enrolled (76% female), with a median age at study time of 12.8 (9.0-17.6) years. Forty-nine had JIA-U, 37 JIA without uveitis and 14 idiopathic uveitis. Uveitis was active in 14/63 patients (22.2%), with a median of uveitis duration of 9.0 years (3.6-14.8). Almost all children with uveitis were on systemic treatment (58/63, 92%) at the time of interview; 54.0% of patients presented an ocular damage, with 6.0% having a best corrected visual acuity (BCVA) < 4/10. Total score, VF and QoL scores resulted significantly higher in JIA-U patients compared to JIA without uveitis, while no differences were noticed among children with uveitis with or without JIA (Table 1). School absence was reported more frequently in JIA-U compared to JIA only (32.7% vs 10.8%, p 0.0211). VF was significantly worse in patients with ocular damage and BCVA < 4/10 (p 0.00351 and 0.0123, respectively). In patients with uveitis, VF and QoL showed a significant correlation (r 0.50, p<0.0001) especially in patients with idiopathic uveitis (r 0.74, p<0.0001).

Conclusion: Visual function is a crucial component of QoL in children with uveitis and it correlates with ocular damage. Since eye involvement significantly affect QoL in patients with JIA, a specific tool widely validated and cross-cultural adapted is highly demanded in the clinical care of JIA-U patients.

REFERENCES: