Methods: The performance of Rheumatic? was tested using data from 175 patients from three university rheumatology centers covering two different settings: A.Risk-RA phase setting. Here, we tested whether Rheumatic? could predict the development of arthritis in 50 at-risk-individuals with musculoskeletal complaints and anti-citrullinated protein antibody positivity from the KI (Karolinska Institutet) B.Early arthritis setting. Here, we tested whether Rheumatic? could predict the development of an immune-mediated rheumatic disease in 71 patients with CCP-AB with or without musculoskeletal symptoms, excluding arthritis. Participants are regularly followed with clinical examination and HR-pQCT imaging of the MCP and radial bone to monitor early bone changes. HR-pQCT images with low motion grade artefacts were analyzed to obtain the total (D100), cortical (DComp) and trabecular (DTrab) vBMD (D100) in mg HA cm².

We descriptively analyzed the vBMD time course in patients who developed RA by fitting regression curves separately for the pre-clinical and clinical periods and estimated time-conditional marginal mean vBMDs for the 5-year peri-RA period. We analyzed time to diagnosis of clinical RA defined by the 2010 ACR/EULAR classification criteria using Cox regression models. Hazard ratios indicate the relative risk of clinical disease onset associated with 1 standard deviation reduction in bone density.

Results: 130 subjects (mean [SD] age 470 [12.2], 89 female [68%]) between 2011 and 2020 were analyzed. Median (IQR) follow-up duration for the cohort was 18.6 (4.6-47.6) months. Participants underwent 233 HR-pQCT scans and 58 (45%) underwent 2 to 6 scans with a median interval of 12.2 (±21.2) months. 49 (38%) patients who developed RA had a pre-diagnosis follow-up of 4.1 (2.5-13.4) months and post-diagnosis follow-up of 22.0 (8.8-38.9) months. The time course of scaled bone mineral densities depicted in Figure 1A suggest that bone

Table 1. Relative risk of RA development in the total cohort; crude and age/sex adjusted hazard ratios for one standard-deviation reduction in vBMD.

<table>
<thead>
<tr>
<th></th>
<th>Crude Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95%CI) P</td>
</tr>
<tr>
<td>MCPD-Comp</td>
<td>1.16 (0.86 to 1.57) 0.336 1.00 (0.89 to 1.43) 0.933</td>
</tr>
<tr>
<td>MCPD-Trab</td>
<td>1.14 (0.83 to 1.61) 0.405 1.07 (0.85 to 1.35) 0.341</td>
</tr>
<tr>
<td>MCPD100</td>
<td>1.16 (0.83 to 1.61) 0.392 1.05 (0.85 to 1.31) 0.925</td>
</tr>
<tr>
<td>Rad.D-Comp</td>
<td>1.42 (0.97 to 2.07) 0.071 1.00 (0.70 to 1.43) 0.996</td>
</tr>
<tr>
<td>Rad.D-Trab</td>
<td>1.20 (0.87 to 1.66) 0.257 1.00 (0.81 to 1.25) 0.925</td>
</tr>
<tr>
<td>Rad.D100</td>
<td>1.43 (0.99 to 2.06) 0.056 1.00 (0.61 to 1.25) 0.934</td>
</tr>
</tbody>
</table>

Figure 1. (Area under) the receiver operating curve for the total Rheumatic? score

Conclusion: Rheumatic? is a web-based patient-centered multilingual diagnostic tool capable of differentiating immune-mediated rheumatic conditions from other musculoskeletal problems. A following subject of research is how the tool performs in a population-wide setting.

REFERENCES:

Acknowledgements: This project has received funding from EIT Health. EIT Health is supported by the European Institute of Innovation and Technology (EIT), a body of the European Union that receives support from the European Union’s Horizon 2020 Research and Innovation program. This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777357, RT Cure.

Disclosure of Interests: Rachel Knevel: None declared, Johannes Knitza: None declared, Aase Hensvold: None declared, Alexandra Circumaru: None declared, Tor Bruce Employee of: Ocean Observations, Sebastian Evans Employee of: Elsa Science, Tjard Maarseveen: None declared, Marc Maurit: None declared. Liesbeth Beart- van de Voorde: None declared, David Simon: None declared, Arnd Kleyer: None declared, Martina Johannesson: None declared, Georg Schett: None declared, Thomas Huizinga: None declared, Sofia Santesson Employee of: Elsa Science, Alexandra Lindfors Employee of: Ocean Observations, Lars Klareskog: None declared, Anca Catrina: None declared.

DOI: 10.1136/annrheumdis-2021-eular.1118

OP0148

SPATIOTEMPORAL DYNAMICS OF BONE LOSS BEFORE AND AFTER THE ONSET OF RHEUMATOID ARTHRITIS


Background: Rheumatoid Arthritis (RA) is preceded by a clinically silent pre-phase characterized by autoimmunity against anti-modified protein antibodies including anti-citrullinated protein antibodies (ACPAs). At this pre-stage patients already experience significant loss of volumetric peripheral bone mineral density (vBMD) compared to healthy controls measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) (1-2). However, the longitudinal course of vBMD changes during the preclinical phase, after diagnosis, and its association with time to disease onset have not been investigated.

Methods: To explore the development of arthritis, we initiated a RA-at-risk cohort in 2011. This prospective cohort includes adults positive for CCP-AB with or without musculoskeletal symptoms, excluding arthritis. Participants are regularly followed with clinical examination and HR-pQCT imaging of the MCP and radial bone to monitor early bone changes. HR-pQCT images with low motion grade artefacts were analyzed to obtain the total (D100), cortical (DComp) and trabecular (DTrab) vBMD (D100) in mg HA cm².

We descriptively analyzed the vBMD time course in patients who developed RA by fitting regression curves separately for the pre-clinical and clinical periods and estimated time-conditional marginal mean vBMDs for the 5-year peri-RA period. We analyzed time to diagnosis of clinical RA defined by the 2010 ACR/EULAR classification criteria using Cox regression models. Hazard ratios indicate the relative risk of clinical disease onset associated with 1 standard deviation reduction in bone density.

Results: 130 subjects (mean [SD] age 470 [12.2], 89 female [68%]) between 2011 and 2020 were analyzed. Median (IQR) follow-up duration for the cohort was 18.6 (4.6-47.6) months. Participants underwent 233 HR-pQCT scans and 58 (45%) underwent 2 to 6 scans with a median interval of 12.2 (±21.2) months. 49 (38%) patients who developed RA had a pre-diagnosis follow-up of 4.1 (2.5-13.4) months and post-diagnosis follow-up of 22.0 (8.8-38.9) months. The time course of scaled bone mineral densities depicted in Figure 1A suggest that bone

Figure 1. Time course of vBMD in the sub-cohort of patients who developed RA defined by the 2010 ACR/EULAR criteria. (A) Time-conditional marginal mean vBMD values estimated using mixed models. Time-zero indicates the date of clinical RA diagnosis. (B) Time-conditional marginal mean vBMD values estimated using mixed models. Time-zero indicates the date of clinical RA diagnosis.
density around the MCP joints deteriorate in the preclinical phase of RA, which is mostly prominent in the trabecular bone. Modelling (Figure 1B) suggests that trabecular bone loss around the MCP joints has a constant pace regardless of the clinical status. Whereas the radial bone densities are relatively stable in the preclinical phase and show a reduction after the clinical onset of RA. Age and sex adjusted hazard ratios (95%CI) for the risk of RA clinical onset were 1.52 (1.03 to 2.25) for radius D100 and 1.66 (1.07 to 2.55) for radius DComp (Table-1).

Conclusion: Metacarpal bone showed a constant decline that started already in the pre-phase of RA and continued after its clinical onset. In contrast, bone loss in the radius was not observed in the pre-phase but started at onset of RA. Low radial vBMD in the pre-clinical phase, however, was associated with a higher risk of RA onset. These findings suggest different spatiotemporal dynamics of bone loss before and after RA onset

REFERENCES:

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.4176

OP0149
RELIABILITY AND RESPONSIVENESS OF TWO OMERACT WHOLE-BODY MRI SCORES OF ENTHESEAL AND JOINT INFLAMMATION IN THE KNEE REGION IN SPONDYLOARTHRITIS


Rigshospitalet, Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen, Denmark; 2University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark; 3University of Alberta, Department of Medicine, Edmonton, Alberta, Canada; 4CARE Arthritis, Edmonton, Alberta, Canada; 5University of Alberta, Department of Radiology and Diagnostic Imaging, Edmonton, Alberta, Canada; 6Medical Imaging Consultants, Edmonton, Alberta, Canada; 7Tel-Aviv University, Department of Diagnostic Imaging, Sheba Medical Center, Affiliated to the Sacker School of Medicine, Israel; 8Université catholique de Louvain, Department of Rheumatology, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Brussels, Belgium; 9University of New South Wales, Division of Medicine, Sydney, Australia; 10Sorbonne University, Department of Rheumatology, APHP, Pitur-Salpêtrière Hospital, Paris, France; 11Ghent University Hospital, Department of Rheumatology, Ghent, Belgium; 12Ghent University, VIB Inflammation Research Centre, Ghent, Belgium; 13University of Leeds, Leeds Institute of Rheumatic and Musculoskeletal medicine, Leeds, United Kingdom; 14NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom

Background: Inflammation in peripheral joints and entheses is common in spondyloarthritis (SpA). Whole-body magnetic resonance imaging (WB-MRI) allows whole-body evaluation in clinical studies.

Methods: Assessment of inflammation was performed in the knee region on sagittal WB-MRI using 2 scoring systems, MRI-WIPE and KIMRIS (Figure 1), in 4 iterative multi-reader exercises. In the final exercise, images (psoriatic arthritis, axial and peripheral SpA) were obtained before and after TNF-inhibitor.

Results: In the final exercise (exercise 4), reliability was mostly good for experienced readers with the overall highest interreader agreement in the previous exercise (exercise 3). Median pairwise single measure intraclass correlation coefficients for osteitis and synovitis/effusion for status/change were 0.71 (WIPE osteitis), 0.48 (KIMRIS osteitis) and 0.92 (KIMRIS synovitis/effusion) (Table 1). Wilcoxon signed-rank test showed significant change in synovitis/effusion for both methods and they correlated significantly regarding status in osteitis (0.92, p<0.001) and synovitis/ effusion (0.89, p=0.001) and change in synovitis/effusion (0.89, p=0.001). Standardized response mean was 0.74 (WIPE synovitis/effusion) and 0.78 (KIMRIS synovitis/effusion).

Conclusion: MRI-WIPE and KIMRIS may both be useful as part of modular whole-body evaluation in clinical studies.

REFERENCES:

Acknowledgements: We thank CARE Arthritis Limited (carearthritis.com) for help with setting up the web-based scoring interface, the scoring exercises, and the web-based meetings. We thank all who participated in the SIG (Special Interest Group) virtual OMERACT meeting 29 October 2020. IMo, GDM and PGC are supported in part by the National Institute for Health Research (NIHR) Leeds Biomedical Research Centre, United Kingdom. The views expressed in this study are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Disclosure of Interests: Marie Witterslev: None declared, Walter P Maksymowych Speakers bureau: AbbVie, Janssen, Novartis, Pfizer and UCb

Table 1. MRI-WIPE knee and KIMRIS interreader reliability for OMERACT exercises 3 and 4

<table>
<thead>
<tr>
<th>Variables</th>
<th>No. patients</th>
<th>Type of score</th>
<th>Mean score</th>
<th>ICC</th>
<th>Mean score</th>
<th>ICC</th>
<th>Mean score</th>
<th>ICC</th>
<th>Mean score</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 3</td>
<td>11 Status</td>
<td>3.6 (0-16)</td>
<td>0.57 (0.06-0.98)</td>
<td>1.8 (0-4)</td>
<td>0.47 (0.05-0.85)</td>
<td>32.3 (1-224)</td>
<td>0.87 (0.60-0.99)</td>
<td>29.9 (11-60)</td>
<td>0.34 (-0.62 to 0.87)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 Change</td>
<td>1.1 (2-6)</td>
<td>0.53 (0.03-0.90)</td>
<td>0 (0-1)</td>
<td>0.32 (-0.13 to 0.76)</td>
<td>27.7 (9-131)</td>
<td>0.58 (-0.30 to 0.96)</td>
<td>-1.6 (-33-11)</td>
<td>0.48 (-0.32 to 0.95)</td>
<td></td>
</tr>
<tr>
<td>Exercise 3</td>
<td>11 Status</td>
<td>3.1 (0-16)</td>
<td>0.83 (0.71-0.97)</td>
<td>2.5 (2-5)</td>
<td>0.59 (0.51-0.71)</td>
<td>34.4 (2-233)</td>
<td>0.83 (0.80-0.92)</td>
<td>36.5 (16-78)</td>
<td>0.59 (0.08 to 0.86)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 Change</td>
<td>0.9 (3.6)</td>
<td>0.72 (0.57-0.83)</td>
<td>0 (0-1)</td>
<td>0.63 (0.49-0.76)</td>
<td>19.3 (23-86)</td>
<td>0.46 (0.18-0.83)</td>
<td>-1.8 (-45-17)</td>
<td>0.89 (0.82-0.95)</td>
<td></td>
</tr>
<tr>
<td>Exercise 4</td>
<td>10 Change</td>
<td>-0.25 (-4-5)</td>
<td>0.38 (-0.35 to 0.94)</td>
<td>-1.0 (-3)</td>
<td>0.30 (-0.43 to 0.89)</td>
<td>-0.45 (37-65)</td>
<td>0.26 (-1.86 to 0.97)</td>
<td>-14.7 (-48 to 0.20)</td>
<td>0.48 (-0.39 to 0.99)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 Status</td>
<td>2.9 (0-7)</td>
<td>0.50 (-0.01 to 0.84)</td>
<td>2.1 (0-4)</td>
<td>0.44 (-0.21 to 0.79)</td>
<td>15.2 (6-68)</td>
<td>0.35 (-0.04 to 0.89)</td>
<td>55.6 (1-122)</td>
<td>0.54 (-0.05 to 0.96)</td>
<td></td>
</tr>
<tr>
<td>Exercise 4</td>
<td>10 Change</td>
<td>0.2 (2-6)</td>
<td>0.48 (0.16-0.66)</td>
<td>-1.0 (-5)</td>
<td>0.77 (0.7-0.82)</td>
<td>5.8 (27-111)</td>
<td>0.92 (0.50-0.94)</td>
<td>-20.7 (-65-28)</td>
<td>0.97 (0.96-0.98)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 Status</td>
<td>2.3 (0-6)</td>
<td>0.7 (0.60-0.80)</td>
<td>2.7 (0-5)</td>
<td>0.48 (0.42-0.57)</td>
<td>11.4 (0-36)</td>
<td>0.56 (0.39-0.71)</td>
<td>69.4 (1-153)</td>
<td>0.91 (0.87-0.93)</td>
<td></td>
</tr>
</tbody>
</table>

Sum scores are mean (range) of the patients scores. ICC values are mean (range). ICC is 2-way mixed model, single measure, by absolute agreement.

The Knee Inflammation MRI Scoring System (KIMRIS) [2] was developed and validated in osteoarthritis and demonstrated good reliability.

Objectives: To perform region-based development of whole-body MRI through validation of two knee region scoring systems in SpA.

Methods: Assessment of inflammation was performed in the knee region on sagittal WB-MRI using 2 scoring systems, MRI-WIPE and KIMRIS (Figure 1), in 4 iterative multi-reader exercises. In the final exercise, images (psoriatic arthritis, axial and peripheral SpA) were obtained before and after TNF-inhibitor.

Figure 1. Upper row, left: MRI-WIPE schematic and scoring ranges for the knee region from Krabbé, et al. [1]. Upper row, right: schematic drawing of the principle of scoring osteitis and soft tissue inflammation illustrated by the thiol insertion of the polypeptide. Lower row: Sagittal WB-MRI of a knee with the web-based explanatory interactive overview used in KIMRIS for osteitis scoring positioned for flexor, thisis and patellis.

Figure 1.