Methods: 140 PsA patients were at baseline examined with dual energy x-ray absorptiometry (DXA) with measurements at femoral neck and spine (L1-4). Trained nurses performed the DXA scans. The DXA machines used at baseline (Lunar Prodigy) and at 5 year follow-up (Lunar iDXA) were stable over the measurement periods. Cross calibration using a spine phantom was performed between the two DXA machines (BMD of the old phantom in the new machine and the old phantom in the old machine, with 55 measurement over a time period of 2 weeks) had a difference of less than 1%. Demographic, disease measures and treatment data was collected at the same day or within 14 days to the date of DXA assessment. For group comparison, we used paired student t-test.

Results: After 5 years, 114 PsA patients (50.4% women) were re-examined. Baseline mean (SD) was for age 51.4 (9.4) years, BMI 28.1 (3.4) kg/m2, disease duration 9.1 (6.7) years.

Disease characteristics at baseline and follow-up presented as mean (SD) were: DAS28 3.05 (1.1) and 2.4 (0.8); CRP 4.3 (8.7) and 5.1 (12.2) mg/dl; ESR 14.9 (11.1) and 10.9 (12.9) mm/hr; mHAQ 0.40 (0.35) and 0.38 (0.37).

The proportions of patients as baseline and follow up using conventional synthetic disease modifying anti-rheumatic drugs (DMARD) were 61.4% vs. 46.5%; for biological DMARDs 37.7% vs. 48.2%; for prednisone 5.3% vs. 10.5%, for targeted osteoporosis medication 0.9% vs. 3.5%; for calcium and vitamin-D 11.4% vs. 26.3%. As shown in the table, no significant change in femoral neck and spine BMD and T-scores was found for the 114 patients. However for Z-scores (age and weight adjusted T-score) a significant increase was found both at femoral neck and lumbar spine. When gender was examined separately no significant reduction in bone density was found in men whereas in women a significant reduction during follow up was only found for right femoral neck BMD.

Conclusion: No reduction in BMD at femoral neck and spine was found in our PsA outpatient clinic cohort at baseline or over 5 years follow up. Rather, we found a statistically significant increase in age adjusted bone density (Z-score) both at femoral neck and spine over time. Our data thus adds evidence that PsA patients treated in ordinary clinical practice do not seem to be at an increased risk of developing osteoporosis.

REFERENCES:

Disclosure of Interests: None declared.

Osteoarthritis

POS1086

DIFFERENCES IN PROINFLAMMATORY AND LIPID PROFILE BETWEEN PSORIATIC ARTHRITIS, ANKYLosing SPONDYLOPATHY and RHEUMATOID ARTHRITIS

K. Bones1, E. Kuca-Warnawin2, M. Ciechomska1, P. Gluszko1, E. Kontry1
1National Institute of Geriatrics, Rheumatology and Rehabilitation, Department of Rheumatology, Warszawa, Poland; 2National Institute of Geriatrics, Rheumatology and Rehabilitation, Department of Pathophysiology and Immunology, Warsaw, Poland

Background: Patients with rheumatic diseases such as rheumatoid arthritis (RA), psoriatic arthritis (PsA), and ankylosing spondylitis (AS) are at increased risk of developing dyslipidaemia and premature cardiovascular disease (CVD)[1].

Objectives: To investigate the relationship between proinflammatory cytokines, microRNA, and lipid profile in patients with RA, AS, and PsA.

Methods: A group of 65 patients (RA51/AS23/ PsA25) with high disease activity (mean DAS28 5.98 / ASDAS-CRP 3.7/ DAPSA 38.5) and 25 healthy controls (HC) were compared. Lipid profile comprised triglycerides (TG), total cholesterol(TC), low (LDL), and high-density lipoprotein (HDL). Serum concentrations of IL-6, IL-21, IL-17, TNF and osteoprotegerine (OPG) were measured by commercially available enzyme-linked immunosorbent assays. Expression of miR-23-3p,mir-92-3p,mirR- 485-3p,mir-10b-5p,let-7d-5p, miR-26 -a-2-3p levels in sera was normalized to mir-16a internal control. The Mann-Whitney test was applied for intergroup comparison, the correlation was assessed using Spearman’s Rank test.

Results: Patients with RA revealed mixed dyslipidemia (mean values:TC119; LDL 117; H DL 48; TG 124; mg/dl); PsA revealed hyperglycieridemia (TC 175; LDL 100; HDL 50; TG137mg/dl) and in AS no specific profile was found (TC 179; LDL98; HDL55; TG103/mg/dl). Higher expression of miR-482 was observed in patients with PsA (4.8-fold) and AS (9-fold) compared to RA and HC groups (3.1 and 1.5-fold p=0.02). Similarly, miR-26a revealed higher expression in patients with PsA (28.4-fold) and AS (21.5-fold) than in RA and HC (3.5 and 2.9-fold p<0.00). PsA patients had higher expression of mir-146b than patients with RA, AS and HC (40.3-fold vs 12.6 vs 15.7 vs 3.4-fold p=0.002) and higher mir-10b (11.7 vs 1.4 vs 4.9 vs 1.7-fold p=0.004). Patients with RA showed higher expression of let-7d than patients with PsA, AS and HC (22.4-fold vs 1.8 vs 2.3 fold vs 1.9-fold p=0.002). In PsA miR-92b expression correlated negatively with HDL levels (r=-0.62 p=0.02) and positively with fasting glucose (r=0.71 p=0.00). TG levels negatively correlated with TNF (r=-0.47 p=0.01), IL-17 (r=-0.49 p=0.01) and OPG (r=-0.51 p=0.00) serum levels. Let-7d correlated negatively with TG (r=-0.58 p=0.03). In RA IL-21 positively correlated with LDL (r=0.71 p=0.00) and TC (r=0.75 p=0.001) concentrations. TG levels correlated positively with expressions of mir-92b (r=6,9 p=0,02) and miR-26a (r=0.69 p=0.03). In AS expression of let-7d was correlated positively with HDL (r=0.41 p=0.00) and TC (r=0.45 p=0.00) levels and negatively with ASDAS-CRP (r=-0.675 p=0.02) and CRP levels (r=-0.53 p=0.01). There were no significant differences in OPG, IL-21 concentrations or miR-146b, miR-29b, miR-233 expressions.

Conclusion: Differences in proinflammatory profile in RA, PsA, and AS seem to be associated with different phenotypes of dyslipidemia. In PsA expression of miR-92b and higher levels of TNF, IL-17 and OPG are associated with altered lipid profile and hyperlipopidermia. High activity of AS is associated with low expression of let-7d, possibly influencing TC and HDL levels. Therefore, measuring lipid profile in active disease might be misleading. In active RA increase of TC and LDL was associated with high IL-21 concentration, while hyperlipopidermia with miR-92b and miR-26a expressions.


Disclosure of Interests: None declared.

OSTEORHEUMATOLOGY

POS1087

USING LIPIDOMICS TO PREDICT PREDNISOLONE TREATMENT RESPONSE IN PATIENTS WITH INFAMMATORY HAND OSTEOARTHRITIS: THE HOPE STUDY

M. Loef1, T. Faquih2, J. Von Hegedu3, M. Ghorasain3, A. Ioan-Facsinay1, F. Kroon1, M. Gera4, M. Kloppenburg1,2, Leiden University Medical Center, Rheumatology, Leiden, Netherlands; Leiden University Medical Center, Clinical Epidemiology, Leiden, Netherlands; Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands

Background: Lipidomics analysis has become a valuable technology for understanding pathophysiological mechanisms and may aid the identification of biomarkers of therapeutic responsiveness.

Objectives: To explore the use of lipidomics for prediction of prednisolone treatment response in patients with inflammatory hand osteoarthritis.

Methods: The Hand Osteoarthritis Prednisolone Efficacy (HOPE) study is a blinded, randomised placebo-controlled trial, that investigated the effect of prednisolone treatment in patients with painful, inflammatory hand OA, fulfilling the American College of Rheumatology criteria. The present analyses comprised only patients randomized to daily 10 mg prednisolone treatment for six weeks. Response to prednisolone treatment was defined according to the OARSI-OMERACT responder criteria at six weeks. Baseline blood samples were obtained non-fasted. Lipid species were quantified in erythrocytes with the Lipidiplex2 platform using electrospray ionization mass spectrometry. After pre-processing of the data, 2,268 lipid species were available for further analyses (nmol/mL). In addition, we used an in-house LC-MS/MS platform to analyse oxylipins in plasma, identifying 25 oxylipins (area counts). Elastic net regularized regression was used to predict prednisolone treatment response. A 10-fold cross-validation (CV) was performed for selection of the optimal tuning parameters based on the smallest CV mean squared error. First, a model was fit with commonly assessed patient characteristics and patient reported outcomes, measured at baseline (model 1). Second, we fitted model 2 by adding the Lipidiplex2 platform lipids to model 1. Third, we fitted model 3 by adding the oxylipins to model 1. The discriminatory