Conclusion: Barriers more than facilitators of contextual factors are present in pts. with axSpA. This study shows that barriers in contextual factors are more common in pts. with impairments in self-reported and performed functioning as in those without impairments. This underscores the importance of contextual factors in the management of axSpA pts.

REFERENCES:

Table 1. Presence of contextual factors, stratified for global functioning categories

<table>
<thead>
<tr>
<th>ICF category</th>
<th>EFIS Item</th>
<th>Global Functioning (ASAS HI 0-17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Good ≤ 5</td>
<td>Moderate <5 ≤ 12</td>
</tr>
<tr>
<td></td>
<td>(n= 69)</td>
<td>(n= 106)</td>
</tr>
<tr>
<td>e3</td>
<td>EFIS 1: A result of my rheumatic disease, the children take more responsibility for household tasks.</td>
<td>11 (15.9)</td>
</tr>
<tr>
<td>e3</td>
<td>EFIS 2: I don’t like the way my friends acts around me.</td>
<td>0 (0)</td>
</tr>
<tr>
<td>e3</td>
<td>EFIS 3: I can’t count on my relatives to help me with my problems.</td>
<td>11 (15.9)</td>
</tr>
<tr>
<td>e3</td>
<td>EFIS 4: I modify my home and work environments.</td>
<td>16 (23.2)</td>
</tr>
<tr>
<td>e5</td>
<td>EFIS 5: I have difficulties getting worsening of my disease acknowledged by a health care professional</td>
<td>3 (4.3)</td>
</tr>
<tr>
<td>e5</td>
<td>EFIS 6: Treatment of my rheumatic disease is taking up time</td>
<td>22 (31.9)</td>
</tr>
<tr>
<td>e6</td>
<td>EFIS 7: My friends expect too much of me</td>
<td>1 (1.4)</td>
</tr>
<tr>
<td>e6</td>
<td>EFIS 8: No one pays much attention to me at home</td>
<td>10 (14.5)</td>
</tr>
<tr>
<td>e6</td>
<td>EFIS 9: My friends understand me</td>
<td>56 (83.7)</td>
</tr>
</tbody>
</table>

values given as number (%)

Disclosure of Interests: None declared.

DOI: 10.1136/annrheumdis-2021-eular.1776

POS0074 IMPROVEMENT IN THE DIAGNOSTIC DELAY OF AXIAL SPONDYLOARTHRITIS, RESULTS FROM REAL WORLD DATA

1. Carmel Medical Center, Rheumatology, Haifa, Israel; 2. Technion - Israel Institute of Technology, Haifa, Israel; 3. Tel Aviv University, School of Medicine, Tel Aviv, Israel; 4. Sheba Medical Center, Rheumatology, Ramat Gan, Israel; 5. Barzilai Medical Center, Rheumatology, Ashkelon, Israel; 6. Rambam Health Care Campus, Rheumatology, Haifa, Israel

Background: Diagnostic delay is a major challenge in axial spondyloarthritis (axSpA) with an extended interval of 8-10 years in Europe and 14 years in the United States between symptom onset and disease diagnosis (1, 2).

Objectives: To assess the delay in the diagnosis of axSpA over time in a real world axSpA cohort diagnosed in the last 3 decades and to evaluate factors associated with this delay.

Methods: A cohort of axSpA patients was recruited from a national multicenter registry of inflammatory arthritis. This cohort's demographic, clinical and diagnostic variables were studied. The diagnostic delay was defined as the time interval between the year of first symptom and year of diagnosis. The mean and median diagnostic delay were calculated. A survival analysis was performed evaluating the association between the demographic, clinical and diagnostic variables on the diagnostic delay.

Results: Of the 373 axSpA patients in the registry, 198 (47%) are men. Ankylosing spondylitis fulfilling New York criteria was diagnosed in 73% of the patients. HLA-B27 positivity was found in 64% of patients. The majority of the patients (63%) reported symptom onset between the age of 21-45, 21% before the age of 21 and 16% after the age of 45. Nine percent were diagnosed before the age of 21, 28% between 21-30, 33% between 3140, 21% between 41-50 and 18% after the age of 50. One hundred and ten patients were diagnosed before 2000, 133 between 2001-2009 and 130 between 2010-2020. The mean and median delay in diagnosis was 9.1, 6 (±4.8) years when diagnosed before 2000, 5, 4 (±4.1) years when diagnosed 2000-2009, and 2, 1 (±1.5) years when diagnosed 2010-2020, respectively (graph 1). The only variable which was found to be associated with a shorter delay was the interval between symptom onset and first rheumatology consult: HR of 5.86 (4.3-8, p<0.001) if the rheumatology visit was within the first year of symptoms, HR 3.5 (2.4-5, p<0.001) if assessed 2-3 years after symptom onset. Additionally, age <21 at symptom onset was associated with a shorter delay (p=0.005). Sex, type of axSpA (radiographic vs. non radiographic axSpA), level of education, and HLA-B*27 positivity were not associated with a delay in diagnosis.

Conclusion: Delay in axSpA diagnosis has significantly improved in this real-world cohort during the last decade. The most significant factor associated with a faster diagnosis was the time of the first rheumatology consult relative to symptom onset. Increasing the awareness of disease manifestations and early referral to a rheumatology service can improve the diagnosis delay of axSpA.

REFERENCES:

POS0075 CLINICAL CHARACTERISTICS OF NONRADIOGRAPHIC AXIAL SPONDYLOARTHRITIS IN ASIAN COUNTRIES COMPARED TO OTHER REGIONS: RESULTS OF THE INTERNATIONAL CROSS-SECTIONAL ASAS-COMOSPA STUDY

K. Ono*, 1, M. Kishimoto*, 1, S. Fukui*, 1, S. Kawaji*, 2, G. A. Deshpande*, 3, K. Yoshida*, 3, N. Ichikawa*, 3, Y. Kaneko*, 3, T. Kawasaki*, 3, M. Motsu*, 3, K. Tada*, 3, N. Takizawa*, 3, N. Tamura*, 3, A. Taniguchi*, 3, Y. Taniguchi*, 3, K. Tada*, 3, S. Kobayashi*, 3, M. Okada*, 3, C. López-Medina*, 1, A. Motsi*, 3, D. Van der Heijde*, 4, M. Dougados*, 5, Y. Komagata*, 7, T. Tomita*, 5, S. Kaname*, 5, Kyorin University School of Medicine, Department of Nephrology and Rheumatology, Tokyo, Japan; 1St Luke’s International Hospital, St Luke’s International University, Immuno-Rheumatology Center, Tokyo, Japan; 2Juntendo University School of Medicine, Department of General Internal Medicine, Tokyo, Japan; 3Brigham and Women’s Hospital and Harvard Medical School, Division of Rheumatology, Inflammation, and Immunity, Medicine, Boston, Massachusetts, United States of America; 4Tokyo Women’s Medical University, Institute of Rheumatology, Tokyo, Japan; 5Keio University School of Medicine, Division of Rheumatology, Department of Internal Medicine, Tokyo, Japan; 6Shiga University of Medical Science, Department of Orthopaedic Surgery, Shiga, Japan; 7Koike Keijinkai Hospital, Department of Rheumatology, Hokkaido, Japan; 8Fujita Health University, Department of Orthopaedic Surgery, Aichi, Japan; 9Juntendo University School of Medicine, Department of Internal Medicine, Tokyo, Japan; 10Chubu Rosai Hospital, Department of Rheumatology, Aichi, Japan; 11Kochi Medical School, Department of Endocrinology, Metabolism and Nephrology, Kochi, Japan; 12National Hospital Organization Osaka Minami Medical Center, Department of Orthopaedics and Rheumatology, Osaka, Japan; 13Juntendo University, Koshiba Hospital, Department of Internal Medicine, Saitama, Japan; 14University of Paris, Cochin Hospital, Department of Rheumatology, Paris, France; 15Leiden University Medical Center, Department of Rheumatology, Leiden, Netherlands; 16Osaka University Graduate School of Medicine, Department of Orthopaedic Biomaterial Science, Osaka, Japan

Disclosure of Interests: None declared.

DOI: 10.1136/annrheumdis-2021-eular.1802