varying dose regimens, cumulative doses and observation periods, lack of data on potential predictors of RTM therapy response do not allow univocal conclusions on RTM efficacy or definitive recommendations on RTM use in the patients with SSc.

Objectives: The study of potential efficacy predictors of anti-B-cell therapy in the patients with SSc associated with ILD.

Methods: 90 patients with SSc-ILD verified by multiparametric computed tomography were enrolled to the study and received RTM therapy for 12-42 months at cumulative dose 2.9±1.1 grams (disease duration 5.9±4.8 years, diffused/limited SSc 1.3±1, average age 47 ± 13.6 years, females 83%). All patients received low or moderate dose glucocorticoids. 45 patients received RTM in addition to immunosuppressive therapy (cyclophosphamide and mycophenolate mofetil) because of inadequate efficacy of immunosuppressants. After evaluation of FVC trends in the patients receiving RTM the overall study population was divided into two patient groups for the analysis: group A (n=35) comprised the patients with ≥10% FVC increase (disease duration 6.1±5.8 years, diffused/limited SSc 1.3±1, average age 50±12 years, females 86%, cumulative RTM dose 3.2±12.4 grams), and group B (n=11) comprised the patients with ≤5% FVC decrease (disease duration 5.2±4, diffused/limited SSc 0.8±1, average age 43±16, females 72%, cumulative RTM dose 2.5±0.99 grams). Subsequently correlation analysis was made to clarify the association between delta FVC and a number of clinical (age, gender, duration and form of SSc, modified skin count, presence of gastroesophageal reflux, mPAP, SSc activity (EScSG, points), cumulative RTM dose, immunosuppressive therapy) and laboratory parameters (ESR, ANA-HEP-2, a-Scl70, CRP, B cell count).

Results: In the overall patient population RTM therapy was associated with significant FVC increase from 770±19.9 % to 84.7±20.9 % (p=0.0000000), with median FVC increment 6.6% [0.14]. In group A FVC increased from 75.3±19.9 to 94.3±20.4 (p=0.0000000), with median FVC increment 16.3 [12.6; 24.7]. In group B FVC decreased from 82.5 ± 23.2 to 72.3±19.4 (p=0.0000017), with median FVC decrement 10.4% [-13.4; -6]. Correlation analysis in groups A and B showed significant association of between delta FVC and the patient age (R=0.36), cumulative RTM dose (R=0.34) and EScSG during the last examination (12±0.1 and 3.1±1.4 in groups A and B, respectively; R=0.42).

No significant correlation between delta FVC and any other tested parameters was found.

Conclusion: Therefore, older patients who received the cumulative rituximab dose more than 3 grams with suppressed SSc activity achieved greater FVC increase at the background of therapy. These data allow to consider the above parameters as potential predictors of response to anti-B-cell therapy in the patients with SSc-ILD.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.2313

POS859 DEEP PHENOTYPING OF DERMATOMYOSITIS BASED ON LIPID FERROPTOSIS-RELATED GENES BY MACHINE LEARNING

J. Q. Zhang1,2,3, S. X. Zhang1,2,3, R. Zhao1,2,2, J. Qiao1,2,3, M. T. Qiu1,2,3, S. Song1,2,3, M. J. Chang1,2,3, Y. Zhang1,2,3, G. Y. Liu1, P. F. He1, X. Li1,2,3. 1The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; 2Shanxi Li Xiaofeng Medical Groups, Department of Rheumatology, Taiyuan, China; 3Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China; 4Shanxi Medical University, Medical Data Sciences, Taiyuan, China

Background: Dermatomyositis (DM) is an idiopathic inflammatory myopathy with heterogeneous clinical manifestation that raise challenges regarding diagnosis and therapy1. Ferroptosis is a newly discovered form of regulated cell death with heterogeneous clinical manifestation that raise challenges regarding diagnosis and therapy1. Ferroptosis is a newly discovered form of regulated cell death that is the nexus between metabolism, redox biology, and rheumatic immune diseases2. However, how ferroptosis maintains the balance of lymphocyte T cells and affect disease activity in DM is unclear.

Objectives: To investigate an ferroptosis-related multiple gene expression signature for classification by assessing the global gene expression profile, and calculate the lymphocyte T cells status in the different subsets.

Methods: Gene expression profiles of skeletal muscle from DM patients were acquired from GEO database. GSE143323 (30 patients and 20 HCs) was selected as the training set. The GSE3307 contained 21 DM patients and was selected as the validation set. The 60 ferroptosis genes were obtained from previous literature3. The intersection of the global gene and ferroptosis genes was considered the set of significant G-Ferroptosis genes for further analysis. The “NMF” (R-package) was applied as an unsupervised clustering method for sample classification by using G-Ferroptosis genes expression microarray data from the training datasets. An ferroptosis score model was constructed. The performance of the ferroptosis gene-based risk score model constructed by the DM training set was validated in the batch-1 and batch-2 DM sets. Normalized ferroptosis genes training data was used to compare the ssGSEA scores of gene sets between the high risk and low risk group. The statistical software package R (version 4.0.3) was used for all analyses.

Results: We selected 54 significant G-Ferroptosis genes for further analysis in training set. There were 2 distinct subtypes (high-ferroptosis-score groups and low-ferroptosis-score groups) identified in G-Ferroptosis genes cohort which were also identified in validation datasets (Fig.1A, C, D). Metallothionein 1G (MT1G) was a characteristic gene of low-ferroptosis-score group. The characteristic genes of high-ferroptosis-score group were acyl-CoA synthetase family member 2 (ACSF2) and aconitate 1 (ACO1) (Fig.1B). Patients in high-ferroptosis-score group had a lower level of Tregs compared with that of low-ferroptosis-score patients in both training and validation set (P<0.05, Fig.1E).

Conclusion: The biological process of ferroptosis is associated with the lever of Tregs, suggesting the process of ferroptosis may be involved in the disease progression of DM. Identifying ferroptosis-related features for DM might provide a new idea for clinical treatment.

References:

POS860 EFFICACY AND SAFETY OF TWO COURSES OF RITUXIMAB BIOSIMILAR ACELLBIA IN PATIENTS WITH INTERSTITIAL LUNG DISEASE ASSOCIATED WITH SYSTEMIC SCLEROSIS: A PROSPECTIVE OBSERVATIONAL STUDY

L. P. Ananyeva1, L. Garzanova1, O. Desinova1, M. Starovoytova1, O. Koneva1, O. Ovyanikova1, R. Shayakhmetova1. 1VA Nasonova Research Institute of Rheumatology, Laboratory of Microcirculation and Inflammation, Moscow, Russian Federation

Figure: (A and B) Molecular typing of patients with DM based on ferroptosis-related gene expression profiles consists clustering of GEO samples by NMF. Comparison of ferroptosis score levels between the two subgroups of the training set(C) and the validation set(D). (E) Comparison of the ssGSEA scores between different score groups. The scores of 22 immune cells are displayed in boxplot. *P<0.05; **P<0.01; ***P<0.001.

Acknowledgements: This project was supported by National Science Foundation of China (82001740). Otn Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.2323
Background: Intestinal lung disease associated with systemic sclerosis (ILD-SSc) is a frequent manifestation of the disease, impairing the quality of life and the prognosis of the disease. The efficacy of rituximab (RTX) in patients (pts) with ILD-SSc has been reported. Aims: To assess the efficacy and safety of biologic agents Apart from the cost of therapy and increase pts accessibility to this treatment option. The RTX biosimilar Acelbia (ACB), "BIOCAD," has received approval in Russian Federation in 2014 for all indications held by reference RTX.

Objectives: to investigate the efficacy and safety of ACB in naive to biological therapy pts with ILD-SSc during at least 12 month of follow-up.

Methods: Twenty pts were included in prospective observational study. The pts were aged 49.7 (s.d.14) years, 10 (50%) were females, mean disease duration was 3.5±2.7years, with disease subset in 11 (55%), 13 (65%) were anti-topo-somerase positive, all pts has NSIP-pattern by HRCT. All pts were naive to ACB, received glucocorticoids in low doses, 10 (50%) pts were previously treated with immunosuppressants and 4/20% of them continued to take mycophenolate mofetil as a concomitant therapy. Pts received two courses of ABC with the same scheme: 1 g repeated 1 week apart (4g ACB in total). An assessment of basic measurements was obtained at baseline (Point 0), before the second course (after 72±1.7 mo, Point 1) and at the end of follow-up (13.4±1.6 mo, Point 2).

The results are presented in the form of mean values and standard deviations.

Results: We observed a gradual improvement in the main parameters from Point 0 to Point 2 (table). Importantly, that at Point 1 there were no differences between most basic outcome measures.

Table 1. Follow-up data of ACB treatment in ILD-SSc pts

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Point 0 (n=20)</th>
<th>Point 1 (n=18)</th>
<th>Point 2 (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRSS</td>
<td>12.75±11.1</td>
<td>8.25±7.72</td>
<td>6.16±5.65</td>
</tr>
<tr>
<td>FVC, % pred</td>
<td>89.1±18.2</td>
<td>92.31±19.1</td>
<td>98.26±16.1</td>
</tr>
<tr>
<td>DLCO %</td>
<td>56.67±15.7</td>
<td>58.11±17.7</td>
<td>61.86±17.1</td>
</tr>
<tr>
<td>SHAQ</td>
<td>11.33±0.628</td>
<td>0.98±0.678</td>
<td>0.61±0.495</td>
</tr>
<tr>
<td>Gg/g</td>
<td>12.61±2.134</td>
<td>11.5±1.61</td>
<td>10.19±2.2</td>
</tr>
<tr>
<td>a-Topo, unit/m</td>
<td>109.68±86.92</td>
<td>96.46±81.72</td>
<td>72.26±69.84</td>
</tr>
<tr>
<td>B-lymphocytes absolute count</td>
<td>3.29±0.34</td>
<td>0.016±0.003</td>
<td>0.00198±0.003</td>
</tr>
<tr>
<td>Glucocorticoids, mg/day</td>
<td>11.0±2.7</td>
<td>7.10±2.2</td>
<td>9.4±2.3</td>
</tr>
</tbody>
</table>

*FVC - forced vital capacity % predicted, **DLCO - diffusion capacity for carbon monoxide % predicted. #P 1-2 P 1-3

The frequency and spectrum of adverse events (AE) corresponds to the known in the treatment of RTX, most AEs were classified as mild to moderate.

Conclusion: The data from this prospective pilot study showed the effectiveness of the ACB in ILD-SSc. The clinical effect of ACB arises gradually and the baseline outcome measures reliably improve by the end of the first year. Our study have demonstrated a well-tolerated safety profile. We believe that ACB can be prescribed at SSc-ILD as a first-line drug and/or in the form of monotherapy.

References:

Disclosure of Interests: None declared DOI: 10.1136/annrheumdis-2021-eular.2338

Effectiveness and Safety of Tocilizumab in Patients with Systemic Sclerosis: A Propensity Score Control Matched Observational Study of the Eustar Cohort

S. Kuster1, S. Jordan1, M.D. Elhai2, U. Heid1, K. Steigmiller3, C. Bruni4, F. Iannone5, S. Vettori6, E. Siegert7, S. Rednic8, V. Codullo9, P. Airo2,9, Y. Braun-Moscovici10, N. Hunzelmann11, M. J. Salvador12, V. Ricciere1, A. M. Gheorghiu13, J. J. Alegre Sancho14, K. Romanowska-Prochnicka1, I. Castelli15, I. Koetter16, M. E. Truchetet17, P. J. Lopez-Longo18, P. Novikov19, A. Diolaiti20, Y. Shirmohammadian21, S. Zanatta22, E. Hachulla23, V. Smith24, C. Denton24, R. Ionescu25, T. Schneiders26, J. H. W. Distler27, A. Gabrielli28, A. Hoffmann-Vold29, M. Kuwana30, Y. Allanore31, O. Distler32 on behalf of the University of Zurich, University Hospital Zurich, Department of Rheumatology, Zurich, Switzerland; University of Zurich, University Hospital Zurich, Department of Rheumatology, Zurich, Switzerland; University of Zurich, Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, Zurich, Switzerland; University of Florence, Division of Rheumatology, Department of Experimental and Clinical Medicine, Florence, Italy; GISEA, University Hospital of Bari, Bari, Italy; University of Campania Luigi Vanvitelli, Department of Medicine, University of Bari, Bari, Italy; Charité-Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; University of Medicine & Pharmacy Juliu Hateganu; Cluj, Clinic Reumatologie, Cluj Napoca, Romania; University and IRCCS Policlinico S. Matteo Foundation, Division of Rheumatology, Pavia, Italy; University of Brescia, ASST Spedali Civili di Brescia, Rheumatology and Clinical Immunology, Brescia, Italy; Rambam Health Care Campus, Department of Internal Medicine and Rheumatology Clinic, Bucharest, Romania; University of Valencia, University Hospital Dr. Peset, Department of Rheumatology, Valencia, Spain; Institute of Rheumatology, Department of Connective Tissue Disease, Warsaw, Switzerland; Hospital Universitari de La Santa Creu i Sant Pau, Department of Rheumatology, Barcelona, Spain; Asklepios Clinic Altona, Medical Department 4, Rheumatology, Immunology, Nephrology, Hamburg, Germany; National Reference Center for Systemic Autoimmune and Fibrotic Diseases, National Research Centre "Luigi Vanvitelli", Department of Precision Medicine, Naples, Italy; Hospital General Universitario Gregorio Marañón, Department of Rheumatology, Madrid, Spain; Sechenov First Moscow State Medical University, Clinic of Nephrology, Internal and Occupational Diseases, Moscow, Russian Federation; University of Verona, Rheumatology Section, Department of Medicine, Verona, Switzerland; National Medical School of Higher Education and Rheumatology, Tokyo, Japan; Niguarda Ca’ Granda Hospital, Rheumatology Unit, Milano, Italy; University of Padova, Rheumatology Unit, Department of Clinical and Experimental Medicine, Padova, Italy; Reference Centre for Rare Systemic Auto-immune Diseases for North and North-West of France, University of Lille, Department of Internal Medicine, Claude Huriez Hospital, Lille, France; University of Ghent, Department of Rheumatology, Ghent, Belgium; Royal Free and University College London Medical School, Royal Free Campus, Centre for Rheumatology, London, United Kingdom; University of Medicine and Pharmacy, Department of Rheumatology - St. Maria Hospital, Carol Davila, Bucharest, Romania; Krankenhaus St. Josef, Innere Medizin und Rheumatologie, Wuppertal-Elberfeld, Germany; Universitätsklinikum Erlangen, Department of Internal Medicine 3, Erlangen, Germany; Istituto di Clinica Medica Generale, Università Politecnica delle Marche Polo Didattico, Ematologia ed Immunologia Clinica, Ancona, Italy; Rikshospitalet University Hospital, Department of Rheumatology, Oslo, Norway; Cochín Hospital, APHP, Paris Descartes University, Rheumatology A Department, Paris, France.

Background: Tocilizumab (TCZ) showed trends for improving skin fibrosis and prevented progression of lung fibrosis in patients with systemic sclerosis (SSc) in placebo-controlled randomised clinical trials (RCTs). However, safety and effectiveness of TCZ beyond these selected and enriched clinical trial populations in SSc is still unknown.

Objective: To assess safety and effectiveness of TCZ treatment compared to standard of care in SSc patients from the large, multicentre, observational, real-life EUSTAR network/database using propensity score matching.

Methods: SSc patients from the EUSTAR network/database, who fulfilled the ACR/EULAR 2013 classification criteria, with a baseline and a follow-up visit at 12±3 months, receiving TCZ or standard of care (controls), were selected. The following variables were used for the propensity score matching (1:1); age at diagnosis, gender, disease subtype, baseline modified Rodnan skin score (mRSS), forced vital capacity (FVC), and diffusing capacity for carbon monoxide (DLCO), co-therapy with immunosuppressives, disease duration, and year of treatment. Primary endpoints were mRSS and FVC at 12±3 months follow-up compared between the groups, using paired t-tests. Secondary endpoints were the percentage of progressive/regressive patients for skin and lung at 12±3 months (follow-up according to EULAR 2.2). Safety data were assessed pre-processing decisions (selection of most recent vs. random observation for control patients with multiple suitable time intervals), as well as the matching method (optimal vs. exact matching). Missing values were addressed with 100-fold multiple imputation using chained equations. Safety data were analysed in all patients. The study including the statistical analysis plan was pre-registered at www.drks.de (DRKS-ID: DRKS00015537).

Results: We identified 93 SSc patients with TCZ and 2370 SSc patients with standard care who fulfilled the inclusion criteria. Forty nine (57.7%) of the TCZ treated patients were diffuse, eight patients were not classified, disease duration was (means±SD) 6.3±5.40 years, their baseline mRSS was 15.0±5.10.85, and 76 (81%) received immunosuppressive therapy in addition to TCZ. Through multiple imputation and propensity score matching, 100 imputed