2) In our study, ILD was more frequently associated with women and joint or skin symptoms, as well as with data on immunological activity, without statistical significance.

REFERENCES:

Disclosure of Interests: None declared.

DOI: 10.1136/annrheumdis-2021-eular.2726

POS0753

SUBSPECIALTY LUPUS CLINIC CARE IS ASSOCIATED WITH HIGHER QUALITY WITH SYSTEMIC LUPUS ERYTHEMATOSUS

S. Sreedharan1,2, A. Hoi1,2, N. Li1, G. Littlejohn2, R. Buchanan3, M. Nikpour4, E. F. Morand1,2, V. Golder1,2. Monash Health, Department of Rheumatology, Melbourne, Australia; 1Monash University, School of Clinical Sciences, Melbourne, Australia; 2Austin Hospital, Department of Rheumatology, Heidelberg, Australia; 3St. Vincent’s Hospital Melbourne, Department of Rheumatology, Fitzroy, Australia

Background: Healthcare quality for systemic lupus erythematosus (SLE) is a modifiable target for improving patient outcomes. Disease-specific subspecialty clinics offer experienced healthcare professionals, collaborative multidisciplinary teams and streamlined care processes. A single center study in the USA has suggested superior performance of the subspecialty lupus clinic in the provision of quality care (1), but this has not been examined outside the USA where access to care may be inferior.

Objectives: To assess the quality of SLE care provided in a subspecialty lupus clinic compared with hospital general rheumatology and private rheumatology clinics in a non-US, universal healthcare setting.

Methods: Lupus patients (n = 258) were recruited in 2016 from various clinic settings in Australia, including a subspecialty lupus clinic (n = 147), two hospital general rheumatology clinics (n = 56) and two private clinics (n = 55). Quality of care was assessed using 31 validated SLE quality indicators (QI) encompassing diagnostic work-up, disease and comorbidities assessment, drug monitoring, preventative care and reproductive health (2,3). Data were collected from medical records and patient questionnaires. Overall and individual QI performance was calculated and compared between the three clinic settings, and multivariable regression was performed to adjust for sociodemographic, disease and healthcare factors.

Results: Median (IQR) overall performance on eligible QIs was higher in the lupus clinic (66.7% [16.9]) than the hospital general rheumatology (52.7% [10.6]) and private rheumatology (50.0% [18.0]) clinics (p < .01), and remained significant with multivariable adjustment. This trend was still observed when the overall performance was reassessed in patient self-report (73.1% [14.8] vs 68.1% [11.5] vs 63.2% [13.4], p < .01). This difference may be due to consistent formal assessments of disease activity (100% vs 0% vs 0%, p < .01) and disease damage (95.9% vs 0% vs 0%, p < .01). This difference may be due to formal assessments of disease activity (100% vs 0% vs 0%, p < .01) and disease damage (95.9% vs 0% vs 0%, p < .01). This difference may be due to formal assessments of disease activity (100% vs 0% vs 0%, p < .01) and disease damage (95.9% vs 0% vs 0%, p < .01). This difference may be due to formal assessments of disease activity (100% vs 0% vs 0%, p < .01) and disease damage (95.9% vs 0% vs 0%, p < .01). This difference may be due to formal assessments of disease activity (100% vs 0% vs 0%, p < .01) and disease damage (95.9% vs 0% vs 0%, p < .01).

Conclusion: SLE patients managed in a subspecialty lupus clinic received higher overall quality of care when compared to hospital general rheumatology and private rheumatology clinics. Regular assessment of QI performance can improve quality of care for patients in all clinic settings.

REFERENCES:

Disclosure of Interests: None declared.

DOI: 10.1136/annrheumdis-2021-eular.2760

POS0754

DEVELOPMENT OF A RISK PREDICTION MODEL FOR VENOUS THROMBOEMBOLISM IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS: THE SLE-VTE SCORE

H. You1, M. Li1, J. L. Zhao1, L. Wu2, X. Duan3, H. Luo3, C. Zhao3, F. Zhan3, Z. Wu3, H. Li4, M. Yang4, J. Xu4, W. Wei5, Y. Wang5, J. Shi5, J. Qu5, Q. Wang6, X. Leng7, X. Tian8, Y. Zhao9, X. Zeng1. 1Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Department of Rheumatology, Beijing, China; 2The First Affiliated Hospital of Nanjing Medical University, Department of Rheumatology, Nanjing, China; 3People Hospital of Xijinjiang Uygur Autonomous Region, Department of Rheumatology, Urumchi, China; 4The Second Affiliated Hospital of Nanchang University, Department of Rheumatology, Nanchang, China; 5Xiangya Hospital, Central South University, Department of Rheumatology, Changsha, China; 6The First Affiliated Hospital of Guangxi Medical University, Department of Rheumatology, Nanning, China; 7Hainan General Hospital, Department of Rheumatology, Haikou, China; 8Kijing Hospital Affiliated to the Fourth Military Medical University, Department of Rheumatology, Xi’an, China; 9Affiliated Hospital of Inner Mongolia Medical College, Department of Rheumatology, Hohhot, China; 10Nantang Hospital, Southern Medical University, Department of Rheumatology, Guangzhou, China; 11First Affiliated Hospital of Kunming Medical University, Department of Rheumatology, Kunming, China; 12Tianjin Medical University General Hospital, Department of Rheumatology, Tianjin, China; 13Institute of Basic Medical Sciences, China Academy of Medical Sciences & Peking Union Medical College, Department of Epidemiology and Bio-Statistics, Beijing, China; 14Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Department of Respiratory and Critical Care Medicine, Beijing, China

Background: Patients with systemic lupus erythematosus (SLE) have a substantially increased risk of venous thromboembolism (VTE). An individual VTE risk assessment is important to ensure that all patients are assessed and given adequate thromboprophylaxis.

Objectives: We conducted this study to develop a risk score for VTE in patients with SLE.

Methods: Patients with SLE who participated in the Chinese SLE Treatment and Research group were enrolled in this study. Patient baseline information and clinical laboratory indicators were obtained, and VTE events were recorded every 3-6 months during follow-up visits. The risk prediction model was created and internally validated using the bootstrap methods, and a scoring system was established (Figure 1).

Figure 1. Flow chart of study design.